The ATRSHMLOG

What's in there ?

Table of Contents

INETOAUCTION. ..ttt ettt et e bt e st e e bt e st e et e s st e e bt e sae e e sbeeesmneeesanneeesanneas 12
The usual chapter you won't need t0 Fead...........coeevuerieriiniirienieerteeete ettt 12
HISTOTY FIIST. ettt ettt et et e b et s bt e s bt et e st e bt e be s st esbeenbesabeeas 15
How it began, how it was revived, hOw it 80€S ON.........ccciiriiriiiinieriieeeeete e 15
Whom do we have to thank for this ?..........cocioriiiiiiii et 17
The guys behind this module............coccooiiiiiiiiii e 17
The guys who have made it DEtter.......ccccuiiiriiiiiiiieeeeeee e e e 17
The basics of the ATRSoft GmbH Shared Memory logging module...........cccccooiiriiiiniiniinniiiennnee. 18
This is the first MUSt read ChAPLET.......ccviiiiiiiiieiiecece e ae e e esreees 18
WRY 10 DUILA ettt ettt ettt e st e et e st e e be e sabesbaeeeane 19
The ways to get @ WOrking MOAUIE...........coovvuiiriiiiiiieiiieeeeceeere e re e e saeeesabaeeeees 19
Definition : BASEDIR......cccuiiiiiiiiertiteeeteste ettt ettt sat et et sbe b saeesaeeseneeeenneens 19
Definition : MOAUIE........cc.ooiiiiieetee ettt ettt st sb e et e e 20
Definition : SUPPOIT PrOSTAIML. ...ccueervtiterterreeteeterieeteeeenttetestesreebesstesseessestesseessesasesseesneesas 20
Definition : LIibrary (THE)..cccveeoieriieiieeieeteeieest et sttt teeseaesteeaeesaeesenesssaessnaessneas 22
Definition : HEAAETS. ..c..cocuiiiieiiieiieriteieeeeetee ettt ettt ettt e e s 23
Definition : Build PrO@rams.........cccceieeiiierieeiiienieeieeseeeieeseesteeseesseesseesseesssessseessssseessseeens 23
Definition : HEIPET.....cooiiiiiiieeeeeete ettt sttt et et e s st e e e s snee e 26
DEfiNItION § AT\ .uiiiiieiieeiieiieeieeree et e ete et e et e steessbeesatessbe e saesssaesssessseenssesssaenssesssaeesssens 26
Definition : JINT LAYeT....cccueiiiiiieeiieeieeieeeteet ettt ettt ettt e s e st e et e e e e s abaeeeataee s 27
Definition : The Pl LaYer........c.cociieiieiieeiecteeeet ettt se e s te e e b e e seaesbeessneesnnes 29
Definition : The python 1ayer.........cc.cociiiiiiiiiee et 29
Definition : The SWIG LaYeT......cccuieiieiieiieeeeeieeteete ettt et seaeste e e e sbeeseaessaessneessnes 29
Definition : TR @rea........cccocieiiiiiirietiteetee ettt ettt sb e s s vt s eneesneeeane 29
Definition : The @VENL........cotiiiieeeete ettt ettt et st e st e b e aee e 30
Definition : The enVIFONIMENL......c...cctiiirtiriiierieieeteeteeete sttt s e st e st et reessessneeene 30
Definition : The flag files.......cceoiiiiiiiiieieeeeeeeee ettt e e aa e e e aaee s 31

HOW 10 DUILA Bttt ettt sttt et b s st b e et e e sbe e e 32
The hopefully WOTKING WaY......cccciiiiiiiieeieeeieeieese ettt ettt teesae e b e teesbe e beessaeaesnsneaes 32
After the dOWNLOAA........c.ooiiiiiiiiieeee ettt sttt 32
Check fOr COMPIEtENESS......cccviieiiieiieeieeiierte ettt e et e st e e steesteebeessseesbeessseesseeassseesassseesasssnennns 35
Check for the platform........coueiiiiiiiiii et 37

First time: DUILA......couiiiieeeeeee ettt 39

First test : create the DUfer.........c.coiiiii e 41

First test : it the Area.......coueerieriiiiieeee ettt sttt e s 42

First test: run the Simplest teSt PrOZTAIN........cccutirierriierieerieerieeieeste et este e e e steeseeessbeeesneeeas 43

First test: getting the 108 iNt0 fileS........ccueviiriiiiiiieiieeeeeeee et aee e 44

First time : converting binary to human readable.............cccccooiriiiiiiiniiee 47
When it does NOt WOTK fOT JOU......iiiuiiiiieiiieiieiiecieeteete ettt re et e s ba e e sesra e e esbaeesnaeas 49
Check the C COMPILET.......coiiiiiiieeeeeete ettt st ettt e st e b e saeeesabae e s 52

Check the CH4 COMPILET.......coiiiiiiiiiiiiiieeeeeee e sre e e sae e e s s aaa e e e s s s anens 54

Check the OS if the things fail t0 TUN.......cocciiiiiiiiiiiee e 55

When it does not fit fOr yOUr NEES..........cccuiieiiiiiieiieeeeieeeee et e e e esae e 56
Changes with the build in initialization Stuff...........cc.ccoieiiriiniiiee 56
Changes iN the COE.......ccuiiiiiiiiieeceeeee ettt s e e e st e e sbeeesebaaeeeessaneneeessssnens 58
AN STULT ..ottt ettt st e st e e st e et a e e e abaee s 59

Now that I have it —how d0 T USE It 2....coueiiiiiee et e 60

The way to implement a simple 108gINg Programl..........ccceeevuerrierirrierienieieneeseere e 60
INCIUAE SEAIO. Nttt sttt e e s 61
Starting point and PATAIMELETS.cueeruierieeriieeieerieeeteeitestessteeseeesseesbesssseessasaeessasaeessnseeesnnees 62
Calling the library function Printf..........cccceeciieiieiiieiiecieeeecece et eeve e e e sveeeeaes 62
Returning from MaiN.........ceoriiiiiiienieeeeeee ettt et ste et e st e e saeesabaeeesasnee s 62
The final eNd (OF TIOt 2)..euuvieiiieiieciieeieeeeee ettt ettt st e e bt e ssbe e teeesbe e e sbeeessbeeesnsbaeeensseens 62
Adding the MOAUIE........cccueiiiiiiiiieeeeee ettt et e st e be e st e sbaeesnnes 63
AttaChing T0 @I AT A...ccuveiieuiieiiieeeitieeeiteeeiteeeitteesteeesteeesaeeessaeeessseessssaessseesssnsssaeesessssseeesnnns 65
Adding the 108GING......coouiieiiiiieieeeee ettt ettt et e st st e aae s baeaes 67
COMPILE ANA LOSt....uviiieiiieieiieerieeeee et eerte e srte e st e e st e e s bt e ssabeeesabeesssbeessseeesseeessaeessseesssseesnsnns 68
The deep StULE...... .ottt sttt et s e e be e st e e s 69
MEASUTING A PIANE......cciiiiiieiieeieeceeeie ettt e este et e et e e s ae e steesseessbeesseessse e saaesseenseesssseessnsseens 75

The big example for the C COMMUNILY.....ccceeriiriieiiiiierieeteeeete st e e 77
TTIAITL ettt et e et et e ettt e et e et e e e bt e e et e e e ab e e e bt e e e bt e e e bb e e e bt e e e bt e e e bt e e e R bt e e e bt e s enbeesenbeesenbeeeenn 78
BVAL ettt ettt st b b e a e bt et e st e bt et e et e nbe e e b e e eareeeanee 80
EXEC. et uuteeeunteernteeette e ettt e e b et e e bt e e e bt e e bt e e a bt e e a bt e e a bt e e b b e e e bt e e e b et e e b e e e e R bt e e Rt e e e bbbt e e e e e nbbaeeeeeeannrnees 80
(24 3] USSP PRSP PSP PPPPPPRRRPPPPRROORt 81
FUIICS. ettt ettt ettt ettt a et st e s h et e b e s bt e be st e sate e ateesabeea 82
TTHE TEST. ettt ettt e ettt st b e st s bbb s bt e bt et e sbe e be et e saeeneeeas 82

The java [angUAZe SUPPOTL......utiiriierriieeiieeeiteeeeteeerteeereeesteessateesssteessseeesssseesssseesssseesssnssssseesenns 83
HOW T WOTKS. .ttt sttt ettt e b e st s e s nee e 83
HOW 10 US Il.teiiiiiiiiieiitee ettt ettt e et sbe e s et e sesba e e e e eessnaeeeseennne 83
How to build it in the first PLaCe.........cocuiiiiiiiiiiieeeee e 84

TheE JAVA QITECIOTY....eeiuieieiieeeiieeeiee et eetee et e et e e e et e e s te e e s e e e sabaeesabaeessseesssseesnnsaesnnnnns 85
The DN QIT@CLOTY....cevieeiieeiieeieeteee ettt sttt et st et e s abe e e sabaeesasaeeas 86
Copy headers and lib from the C module.............cccuervueeriieiiieniecieeieeieeee e 89
Change into your vendor and jdk dir€Ctory.........ccccceeeverrierersieniienienieneeseeeeeeeseesee e 90
Setting the eNVITONMENL........cccuiiiiiiiiriieiieecieeeee ettt e s sae e s sbeesssaeesssaeesssaeensseeens 95
Building with create_jni_Iib.Sh.......coccooiiiiiiiiii e 96
Testing the JNi DIid@e.......ccoviiiiiiieieieiceteeee e e et e e e e e e s aaaaes 97
DIBLAILS. ..ttt et b e st sa bt ettt s b st e nne s 98

The python 1anguage SUPPOTT.......ccccuiiiriiirriieerieeerieeerieesrteesirteesreessreessbeessaseesssseesssseessseeesnnnns 105
PYtHON'S SEX ..ottt ettt ettt ettt st b e st sa e bbbt e b e nae 105
HOW St WOTKS.c.eee ettt st st s e sb e e e e 106
HOW 10 USE Lluuiiiniriiiiiiiiiiiieiieieiteeeit ettt st et aa e e e s s anan e e e e e 106
How to build it in the first PLaCe.......c.ceovieciieiieeiiececeeeee e e 107

The PYthON dIF@CTOTY...c..eiiiiiieeiieieeeete ettt sttt et e s bte e s snaeessaneas 108
The DIN iT@CLOTY.cceeutieieiieeeieeete ettt e st e e sre e e sabe e s abeesseeessaaaeeesssnnsnaeessnnnnes 109
Copy headers and lib from the C module............cccccoviiriiiiniiniiiiieieeeeeeeeecee e 111
Change into YOUT STC QITECLOTY.....ccccuieiriueeirieeerieeeiieeesteesireeesreeesseesseaesssneeeesesssnseeesesnnns 112
Setting the eNVIIONIMENL.ccocveriiierieeiierieete st et e ste et e s teeseeesteesreesbessseessseesseessessnnne 114
Building with create_python_liD.Sh.......c..cooiiiiiiiiiiiiecceeee e 115
Testing the python BIidge...........oouiiiiiiiiiieeeee et 116
DOLAILS. .ttt ettt b e et e bt e et e e bt e e nreeeas 117
The perl 1anguage SUPPOTT.........covuiirierriierieeiierte ettt ettt et e st e st e sbeesatesbeesseesaseesseesnseenns 121

HOW T8 WOTKS..eeeveeeeeeeteteeieeeeeeteeeeeeeeeeeeeeeeeresereseeeeesesesesesesesasesasasasesesesssasssesssesssasasesasesssnnnnnnsseenes 122

HOW 10 TS L.ttt ettt ettt s et st e s sbbe e e e s e emraeeeeeeas 123
How to build it in the first PLace.........ccocueiiiiiriiiiieeee e 123
TheE DIl dIT@CIOTY...cccuviiiiiieeiieeeiteeete ettt e st e e st eesateessaaeesbaeesssaessssaeessnsssnaeessnnnnes 124

The DIN QIT@CLOTY...ceeuveiiieiiieieette ettt ettt et s bt e st e e st e e s snaeesnnnes 125
Copy headers and lib from the C module............ccceeeiiriiiinieeiiiieeieeieeeeee e 127
Change into YOUT SIC QITECIOTY.c...civierriierieeiieniteeieeste et este st et esbeesatesaeessaeesaeaeessaeaeeas 128
Setting the eNVITONMENL.......ccccuiiiiiiiiriieirieeciee et eee e e ssae e e sare e s sraeesaaeessaeesaneas 130
Building with create_perl_lib.Sh.........ccocuiiiiiriiiiiiet e 131
Testing the Perl BIid@e......cccuiieriiiriieieiieee ettt s e e s saaaee e s e naens 132
DIBLAILS. .ttt et b et b e st sae e a e e 133

The one fits all SWIG apProach..........ccccueiiiiiiieiiieeiiceecieeee et re et e e aee e e aaeeeennes 138
HOW T8 WOTKS. ettt sttt n e s e s es 138
HOW 10 US L.ttt ettt et sbe e st s et e s sbbae e e s eemnaeeeeean 138
How to build it in the first PLaCe.........ccocueeiiiiiiiiieeeeee e 139
The SWIG QITECIOTY....ceeeuiiiiiieeiiieeeieeeeteee et e et e s steessateessateesssaeessaesssaeessssssnaeessnsnnes 140

The DN QIT@CLOTY...cecuviiiiiiiieieetee ettt st ettt e s be e s bte e s snaeessnneas 141
Copy headers and lib from the C module............ccceeviiriiieniiniiiiniecieeee e 144
Change into YOUT SIC QITECIOTY.c...civierriierieeieerteeieeete et e ste et et e seeesatesbeessaeeeaeaesssneaeeas 145
Setting the eNVITONMENL.......ccccuiiiiiiiiriieirieeciee et eee e e ssae e e sare e s sraeesaaeessaeesaneas 147
Building with create_swig_1ib.Sh........cccceiiiiiiiiiiiii e 148
Testing the tC] DIIA@e.......uiiiieieieeeeeeeee ettt e e ste e e e s saae e e e s snene 149
DIBLAILS. ..ottt ettt a et h bt s s ae e aeeaee e 150
Another platform : CeNtOS..........coouiieiiieiieeieereeeie et e et esrte et e sbeesteesbeesseessseeessssaeesssseeesssseessnes 155
Get the compiler to work that you Need.............cooieriiiiiiiniiinieeeeeteeee et 155
Changing the bUild SCIIPLS.....ccctiiiriiieiieeeieece ettt et e e re e e sae e e s e s eaaaeeeessannaaeas 157
TOSTINE. .. eeeeeieteeeeete ettt e ettt e e ettt e e ettt e e ettt e e s e abe e e s e asrtee e e ssbaeesennsaeeesannneeeeensaneesennneeeeennnnnns 160
AnNother Platform § CYBWII..ccciiiiiiieiieieeeieecie ettt ettt e et e seaeeteesteebeessaeeseeesssaaesnssasesssseeennns 161
ATLEr the UNPACK.......coiiiiiei ettt sttt s b et e s be e saesabeeaaens 163
Prepare REATETS.c.uiiiiiiieieiee ettt e s e et e e st e et e e st e e e aaaeae e s nnaas 164
FArSt COMIPILE.eiiiieieeteete ettt ettt e st e et e e st e st e e st e s sbeeesasbeeesasbeeenanns 165
THE CYSEIVET STATL...ceuvieieureeiiieeeiteeeiteeeitteeeiteeeeteeesteeessseeessseesssseesssseessseeessseesssseesssseesnsseessssssees 167
Create Of @ DUFTOT......cuiiiiiee ettt 169
Making the area With iMit.........ccieeeiieiniiieerieeeie ettt e esbe e s sbeeesareesbeeesseaeaessnnnnnens 170
First test with atrshmlogtestO0.........c.coevuiirieriiiieeeeeeee ettt ettt e s sbaee e 171
Reader fOr transSTer...........eouiiiirieeeeee ettt sttt 172
Conversion of the binary to human readable form...........ccccoeoiiriiiiiiiniiniiieee, 174
Another platform : MINZW......cciciiiiiieeiieieeeet ettt e et e se e e steesteesbeessaeesbeesssessseessssaesessseeens 176
COPY the NEAGETS.......eeeiieiieeieeee ettt ettt s et e st e e st e s be e s st e s beesabesbaesateesnns 177
Compile with Mmakeall.Sh.........c.coiiiiiiiiie e e s arae s 178
ENd Of COMPILE.....coiiiiiieeeeee ettt et ettt e s it st et e st e e sabaeeeans 179
Path handling for vanilla CMd..........cceeouiiiiieiieeceee e e e sbaee e 180
Creating the DUTEr.........ooiiiie ettt ettt st e e s aee e e 181
The iNit Of the @Tea.......cc.eeiiriiiee ettt ettt 183
First test with atrshmlogtestO0.........c.coevuiirieriiiieeeeeeee ettt ettt e s sbaee e 184
Starting the reader for memory fetChing...........cceevvieriieiiiiiieecee e 185
Conversion of the binary into human readable teXt...........coceeruiiriieriiiniieeierieeeeeeeee e 187
The jni layer fOr MINGW......c.coiviiiiiiiieeeeeeeee ettt e te s e e te e s e e e sbe e s e ssbeeesnsaeeenes 189
Testing the jni bridge for MINGW........cciiiiiiiiiiiee ettt 191
What are those numbers for ? Adjustment PrOCESS ?.........cccueevueerieeireenieerueeseeesieeseessseessessseesssneens 193
Now we need to KNOW hOW fast 1t iS...cc..eeruieriiiiniiiiierieeieeeeeeteee ettt 193

A ToW throughPUL SCENATIO.....ccutiiiiiiieriieieete ettt sttt et sbe et e e saba e e snnaeesnns 198

A scenario for a long term running low throughput program...........c.ccccceevueerveeencieeencnreeennne. 199

A scenario with low throughput and multiple threads............cccoocueriiiniiiniinniiieeieeeeeee 199

A scenario with high throughput and small number of threads...........ccccccveeviviiiriiieeniiennnee. 199

A scenario with very high throughput...........ccccooiiiiiiiinie e 200

S AISEICS e ttteee ettt e ettt ettt e et e e ettt e e e s be e e e s sab b e e e e ettt e e e sttt e e e e bt e e e e e bt e e eenntaaaeeaeeeeenann 202
When I change it, What then ?........coouiiiiiiie ettt st e s iee e 203
The AdJUSTITIENL.veiiiiieiiieeeiee et eete st e sete e e st eesateeessbeeessaeesssseessseesssseessseeessssesssseesssseessnnnnes 204
Changes in the first place in atrshmlog.h..........ccoocieviiiiiiiiiiiee e 204
Changes fOr INtEINALS.........cuieuiiiieeiieerieete ettt et ete et e et e e beessteessbeeesssseaessseeesnsseens 204
Changes fOr the COAE.......cooiiiiiiieeeee et ettt e e e s aees 205
Local changes fOr YOUT OWIN SYSIEIML.........cccuerieerieeeieeiieenieesieesaeesseessreesseesssessssssessssssessssseesssnees 207
PAtCRES. ...ttt et b ettt b e e s be e e bt e e eneeeas 208
Wouldn't it be nice to et this, 100 ...cccuiiiiiiiiiieeieeete ettt esre e s essrae e e eaes 209
The lOTY Aetails....cccviiiiiieiiiee ettt ettt e bt e s st e e st e e be e s st e saaeeessneeenans 210
Theory of the MOAUIE..........cooiieiiieceeee et b e e be e e e enaee s 211
The way to log in shared memory — or how t0 CIrCUMVeNt it.........cccceeevueerieriiernieniieereeerieee e 214
CiNAY'S ClaSSTOOM......vviiriiieieiieirieeiriee et e erteessteeesteeeateesbeeessaeesssaeesssaeesssnssaeassssssssseessnnnnns 217
BaCK 10 WOTK.....eiueiiieiteieee ettt sttt ettt a e st enee s 221

A word about fences — or should I say memory barriers ?..........ccceceeveeevieeceeeieeneesceeesneens 224
FONCE L.t 225
FONCE 2.ttt ettt e e st e e st e e s et b e e e e sttt b et e e e e e eeeeeeeeannns 225
FONCE .t 226
FONCE 4.ttt ettt e e st e e st e e s st e e e e st bb et e e e e eeeeeeeeeeanas 226
FONCE .t 226
FONCE 6.ttt e e e e st e e s st e e e s bbb et e e aaeeeeeeeeeeanas 226
FONCR 7.ttt 226
FENCE 8.ttt ettt e s et e e e s bbbt e e aeeeeeeeeeeennas 226
FONCE 0.t 226
FENCE 10 iiiiiiiieeeeee ettt ettt e e st e e st e e s s bbe e e e st bbbbaaaaaeeeeeeeeeannns 227
FONCE T1..ciiiiiiiiiiit ettt 227
FONCE 121ttt ettt e e st e e st e e s s bt e e e e s bbbaaaaeaeeeeeeeeeannns 227
FONCe 13, ..ot 227

And now for the gallery — the C module Way.........ccceeviieiiiiieeiieiieeieeieeeee et eeaee e 228
The LOG DULTET....c..eiieieee ettt et ettt et et e st s beesaeeeeas 233
THE @T@A... . vieieteeeiiieeiee ettt et ettt e et e e et e e et e e e bt e e s baeessbaeesssaeesssaeenssaeenssaeensseessaaeeesnnnns 234
The thuff Struct N CHENT......coiiiiieeie ettt s 235
The thread 10CalS.......cccuviiriiiiiiececeee s sae e e ae e s rae e s s baeeeeeesnsaeans 236
THE EXEEITIS. ...cvtetiiteeiieteete ettt ettt ettt et e sttt e e st be et s st e be et e sae e bt sabeestebeebeesaneesanee 237
THE INACTOS. . ..veeeireeeiieeeiie ettt e et e e ste e e bt e ettt e sabeessaaeesbeessasaeesasaesssseesnssaesnssaasessnsesens 237
REAL COE. ...ttt sttt b e et b e st st 237
1] 1001 (0 <O B OO UPPORRISRPPPRPRRN 238
AtrShMIOG_AttACh.....cocuiiiiieieeecee ettt st e e bb e e saanee s 238
atrshmlog_init_ ShM_L0Z.....c..ciiiiiiiiiiiiieee e saa e e e e e 240
atrshmlog_cleanup_lOCKS........c.oiuiieiiiiiirieeeeeee et s 241
ATSHMIOE_ VETITY.c..viiiieeiieeieee ettt et e s rb e e e e sbe e e saeeeeseaeaas 241
ALTSNMIOZ_CTOALE. .. .eeeieeieieiieeteetee ettt ettt ettt s e sbe e st e e e s sbe e e s sbeeenanneeas 241
ATSNIMIOE _EIETE....ccuuiiiiiiieeieece ettt e e e s e e e e s e s aabreeeeennseaeas 241
ALrSHMIOE_GOL_ AT A.....eeivieriieiiieiteeieet ettt ettt et e st e st e e b e e st e e e s sbeeesasbeeenanneeas 242
atrShmlog_Get_area_COUNL........cueiriuierriiieieiiieeeiteeeeieeesteeesaeeesareeessseessaeesssaeessssesssssesnsueeens 242
atrshmlog_get_area_VeTrSION........cccueeviiiriieriiienieeiieeste et ettt e ste s teesteesbeesabesbeesabaeseesnnne 242

atrshmlog_get_area_ich_habe_fertig.........ccccceeviiriiiiiiiiiceececeeeeeee e 242

atrshmlog_set_area_ich_habe_fertig...........ccccovviirriiriinniiieeee e 242

atrshmlog_transfer_mem_to_ShIM..........cccocieiiieiiiiniiiicccece e e 242
atrshmlog_read_fetCh........ooiiiiiiiiiece et 243
AtrSHIMIOE_TEAM. ... ciieiiiiiiieeiieeceeee et e e st e e s sbae e s baeesbaeessssanaeessnnnnes 244
AtrSAMIOG_Al10C.....ciiiiiiiiiiieeetee ettt ettt et e st e s are e e eanes 244
atrshmlog_il_connect_buffers_liSt.........ccccueeieeiiiiiiiiiieieeeee e e 245
atrshmlog_acquire_DBUFfer.........cocooiiiiiiniiiee e 245
atrshmlog_dispatch_Buffer.........c.cocuieiiiiiiiii e 245
ATSHMIOZ_fT@E....cneiiiiiiieee ettt st st e st e st e e e e e e 246
AtrShMIOG_fIUSHL...cceiiiiieiecee e et ae e e e ba e e e 246
atrshmlog_write0, atrshmlog_writel, atrshmlog_write2...........ccceoeeviiinviienniieeniieeeen, 246
atrshmlog_init_thread_10Cal.........ccccueiriiiiiiiiiiiiiec e e e 248
atrshmlog_INit_IN_WTIe.....ciiuieeiieiieeieeteeeete ettt s e e e s e 248
1] 11001 (oY <] (0]) TSSO S PPUPURRSRRPPRPPRRRN 248
atrshmlog_turn_logging off...........cooiiiiiiiii e 249
atrshmlog_reuse_thread_bUffers............cccooueeiieriiiiiinieceeceeee e 249
atrshmlog_eXit_ClEANUP.......cociiriiiiierieeteete ettt ettt et e saeesate e aeesabeenes 249
AtrShIMIOE_ CIeaAte_SIAVE.....cc.viiieiiiieiiieeieeete ettt e et e e et e e s sie e e s saae e e e s sssnaaaeessnsnnns 250
atrshmlog_f_list_buffer_slave_ProcC........cccceeiirviiiriiniiienieeiieeeeieeteee e 250
atrshmlog_decrement_Slave_COUNL.........cccuiirrieeriieiniieesieeesieessreesreessereeeesareeeeessannnes 251
atrshmlog_remove_slave_via_local........cccoviiriiiiiiiniiiiieiecteeeee e 251
atrshmlog_get_next_slave_l10Cal........cccceiiiiiiiiiiiiiieiecieccec e 251
ALTSHMIOZ_ GO BNV ..eiiuiiiiiiiiieeieete ettt ettt ettt e ste bt e s a e e st e e ssbaeesnnaas 252
atrshmlog_get_env_Shmid..........coeouiiiiiiiiiiiieiiceeeee e e e aa e e aae s 252
atrshmlog_get_env_id_SUffiX......cccceeriirniiniiiiiee e 252
atrshmlog_get_eNV_PIrefiX.....ccciiccieiiieiiieiieeieeeee ettt sreesee v e steeebeesaaeebeessaeeennes 252
atrshmlog_Set_enV_PrefiX.......cociirieiiiirieeieteet ettt st e s e s 252
atrshmlog_buffers_prealloced...........coocuieiiieiiiiieeieeteeeeeeee e e 252
atrshmlog_il_get_raw_buffers..........cocooiiiiiniiieee e 253
atrshmlog_et_1OGGINE.....cccviiiiiiiriierieeeee ettt e e s e e e s ta e e s aeeesasbaeeeesnns 253
atrshmlog_get_realtime........c.cocuiiiiiiiiinieeitceeeee ettt st s e s 254
AtrShIMIOE GOt STALISTICS. cuuveirvrereiiieieiieeeieeesiee et e ettt essreesreeesreeesaaeeessraeesesssnsssaeessssseees 254
atrshmlog_SIEEP_NANOS........ceiiuiiiiiiiieieeieeteeeet ettt sttt e e bn e e sannee s 254
atrshmlog_set_event_l0CKS_IMAX......cccecueiriieiniiieiniieerieeerieessreeesteessiaeessaaeesaaeesveeesanaeens 254
AtrShMIOG_INIt_BVENLS......iiiieiiiiiieeieeteete ettt ettt et e st e e st e e e sbeeesanneees 254
atrshmlog_get_aCqUITE_COUNL.......ccccviiiruieeriiieenieeeeieeerteeeste e e sreesseaeessaareeeeesnsraaeessnnnnens 255
atrshmlog_get_buffer_id.........cooooeiiiiinii e 255
atrshmlog_get_buffer _Max_SiZe........ccccceeeiieiiiniieieecieee et 255
atrshmlog_get_buffer_SIZe........cccuovuiiriiiiiiiii e 255
atrshmlog_get_ClOCK _id......covuiiieiiiiiiieieeeee et e e e e e e s 255
atrshmlog_get_env_id_SUffiX......cccceeiiiniiniiiiiee e 255
AtrSNIMIOE GO BVEIL....cccuiieiiieeeiieeeieeeite et et e et e et esste e s beeestaeesasbaeeesesasseaaeesnsnssnes 255
atrshmlog_get_event_10CKS_MaX......cccocieriierriieniiieiienieeteeieet ettt e e 255
atrshmlog_get_thread_fence_T........cccooiiiiiiiiieiiieieeee e 255
atrshmlog_get_thread_fence_2..........ccocooiiiiiiiiiiniieeeee e 255
atrshmlog_get_thread_fence_3..........ooviiiiiiiieiieeeeeeeteeeee e e 256
atrshmlog_get_thread_fence_4..........coooooiiiiiiiiieeeee e 256
atrshmlog_get_thread_fence_5..........oouieiieiiieiieeeeeeeeeeeee e 256
atrshmlog_get_thread_fence_6..........coocueeiiiiiiiiiiniiieeeeee e 256
atrshmlog_get_thread_fence_7........coooiieiieoiieiieeeeee e 256
atrshmlog_get_thread_fence_8...........cocooviiiiiriiiiiie e 256

atrshmlog_get_thread_fence_O........c.ooviiiieiiiiiiieieeeeeeeee e 256

atrshmlog_get_thread_fence_10........ccccoriiiriiniiiinieeieeeeeeeeee e 256

atrshmlog_get_thread_fence_11........ccceoiiieiiiiiiieiicieeeee e ae e ve e 256
atrshmlog_get_thread_fence_12.........cccoouiiiiniiiiniineeeeteeee e 256
atrshmlog_get_thread_fence_13.........ccuiiiiiiiieiiieieeeeeeeeeeee e e e 256
atrshmlog_get_f_list_buffer_slave_count............cceceevirniiiiiiniinieieccceeeeee e 256
atrshmlog_get_init_buffers_in_advance...........ccoceevuieriiniiieniiiciieciecieeeee e 256
atrshmlog_get_INITHITIE.cccuiiiiiiieeieeiee ettt et saae s beesaeeeeaas 256
atrshmlog_get_inittime_tSC_after........cceiviiriiieiiieieiiecie ettt 257
atrshmlog_get_inittime_tSC_before..........cociiriiriiiiriiiiiiieeeeeeteet e 257
atrshmlog_get_MiNOT_VETSION.......ciccuieiriueerriieeerieeesteeeiteeesteeessseeessseeessseesssseessssesssseessnnnns 257
atrshmlog_get_patCh_VeISION.........cocuiiriiriiiinieeiterie ettt et e e 257
atrshmlog_get_prealloc_buffer_COuNt..........cccveeiieiiiieiieiiecieeeeee e 257
atrshmlog_get_Shmid.........cooieiiiiiiiii e e 257
atrshmlog_get_f_list_buffer_slave_wait........cccecvuerviieiiiniiiiieeieeeecie e 257
atrshmlog_get_statisticS_MaX_INAeX.......ccceecuerruieriiirriienieeiienieereeete et e sae et seeesieesne e 257
AtrSNIMIOE GO SITALEZY....uieeeurieeiieeeiieeeiieerieeesteeeeteeesteessateeessteesssaeessssaeeesssssnsseaessssnsssees 257
atrshmlog_get_Strategy PIOCESS........cevuterrueeruieriieeriteriteeritesteesseessessseessssaeessseeessseeessseens 257
AtrShMIOE GOt tid.....veiiiiieeiieeeiieeeeeee ettt sre e e ste e st e e s aa e e s ba e e s baeenasaaeeeeenes 257
atrshmlog_get_thread_local_tid.........ccceriiiiiiiiiiiiiiieeee e 257
AtrShIMIOE GOt VEISION...cicuiiiiiieieiieieiie et e et e erteessteesseeeesteeesaeeessseessssaaaesessssssaeessnsnnes 257
atrshmlog_get_wait_for_SIaVveS.........ccociiriiiiiiiniieiieee et 257
atrshmlog_set_init_buffers_in_advance_off............cccccoovieriiiriiiniiniieeeeeee e 258
atrshmlog_set_init_buffers_in_advance_on..........c.cccooerriiiniiniiinnieniieieniecteeieeeee e 258
atrshmlog_set_DUFfer_SiZe........cuiecuiiiiieiiiiieceeeceeec e e 258
atrshmlog_set_CloCK_id......c.oovuiiiiiirieiiieeeee et 258
ALTSNIMIOE _ SET_EVENL..cccuiiieiiiieeiiieeeiteertteeette et e st e e siteessateeesaae e e aaeesbaeesssaaessseeensssneesennnns 258
atrshmlog_set_thread_fence_1.........ccocceoriiriiiniiniiiieeeeeeeee et 258
atrshmlog_set_thread_fence_2...........ccooviiriiiiiiniiicieeeceee e e 258
atrshmlog_set_thread_fence_3..........cccooriiriiiniiniiieeeeeeeete et 258
atrshmlog_set_thread_fence_4...........ccueiviieiieiiieiicieeeeteeee et e e 258
atrshmlog_set_thread_fence_5..........coceiriiiiiiniiniieeeeeeee et 258
atrshmlog_set_thread_fence_6...........ccueevuiieiieoiiniiiieeectcere e e 258
atrshmlog_set_thread_fence_7..........coceoriiiiiiniiniieeeeteeee et 258
atrshmlog_set_thread_fence_8...........cceeviieiieiiiniiciecectee et 258
atrshmlog_set_thread_fence_O..........ccccooriiriiiniiniiieeeceeeee et 258
atrshmlog_set_thread_fence_10.........ccceeviiriieiieeiiiiiieciecee et 259
atrshmlog_set_thread_fence_11..........ccocoviiiiiiniiniienieeeeeteee et 259
atrshmlog_set_thread_fence_12..........ccoviiiiieoiieiiiieceeteere et 259
atrshmlog_set_thread_fence_13........ccccooviiriiiniiniiieeeeet ettt s 259
atrshmlog_set_logging_process_off final..........ccccceeriirviiiiiiniiiiieececeeeeeree e 259
atrshmlog_set_f_list_buffer_slave_Count............ccccovviiriiiiniiinniiniiiiceieceeseeee e 259
atrshmlog_set_logging process_oOff..........cceciieiiiiiiiiieiieceeeeeete e 259
atrshmlog_set_logging PrOCESS_OMN.......c.cevuierieriiienienieenieeieeste et estesateessbeeessaneeesaneeas 259
atrshmlog_set_prealloc_buffer_count............ccoeeeeeiieiiieiieiieeieceece e 259
atrshmlog_set_f_list_buffer_slave_wait.........ccccceevieriiiiiiiniiiiierieccceececeee e 259
AtTSNIMIOE_SEt_SITALEZYeeerurieriuieeeiieeetieeetteesiteesstee ettt e ssateesssaeeessaeessaeesssaeessseeensssseessannns 259
atrshmlog_Set_Strate@y_PIOCESS........cecveirierrueeriierieeenteesteestessseesteesseessessseesssessseessseessnnns 259
atrshmlog_set_thread_fenCe..........ccueeuiiiiiiiieiiieiecececeee e e 259
atrshmlog_set_wait_for_slaves_off..........cocooiiiiiiiine e 259
atrshmlog_set_wait_for_Slaves_ON........cccceecuiiiieiiiiiiieciecce e e 260
atrshmlog_set_f_list_buffer_slave_run_off...........cccoooiiriiininiii e, 260

atrShmIOg_INit VIA_EINV..cccciiiiiiiiiiieiieeete ettt e ste e s sae e s siae e sane s sbae s s ssaaeesesnnns 260

atrshmlog_init_via_file........ccooiiiiiiiiii e 260

INON INLINE CODRE.....cootttiiieitiiee ettt ettt eeetee e eeteeeceeave e e eeaaeseeeesssessesssssssasssseeeeeens 260
AlLfiles With _flag.Cu..eeeviiiieiiieieeeeeete ettt e e 263
AL fI1eS WII DUTTOT.Cueeeeeeeeeeeeeeeeeeeeeeeeeee ettt eee e eee e e eeeeaeeeeeeeeeeeeeeeeeaeeeennnn 263
AL fIleS With _LIST.Cuuvrrreeeeiieieeeeceee ettt e eeeare e e eerr e e e eeabeeeeeeeeeeeeeennnnnnnnnes 263

| 2T 1<) ¥ 17410) TR 263
AAPPDEIAIX. ..ceitieiieeieete ettt ettt ettt s e et s e ettt e e bt e et e e bt e et e e ht e et e e bt e e abaeeesbbeeeenntaeeenreeean 264
|0y o) W o0 16 (<L U URURRRUUUUUURR 267
AtrShMIOG_EITOT_OK....coueiiiiiiiiieiieteeee ettt sttt s e e st e e e ssaes 267
ALTSNIMIOE BITOT_BITOT ... ueiieiieeeiieeiiieerie e et e et e ettt e st e e s teeesaeessateeesataesssseesnssneeessnssssnaeeenns 267
AtTSHMIOZ_EITOT_BITOTZ....ccutiiiieeieeiteeieeit ettt et et e st e e bt e st e s bt e sabesbeesatesabeesssbeesenssaesnnnes 267
atrSNIMIOE_ EITOT_BITOT3......ccciiieeiieeiieeeriee et e et et e e et e e s e e e s aeessbeeesataeesaeeessssseeessanssssaeeenns 267
AtTShMIOZ_EITOT_EITOTI ... ccueiiiieeieeiteete ettt ettt ettt e bt e st e st e st e st e e st e sabeessbeessnsbaesenneas 267
AtrSNIMIOE_ EITOT_BITOTS.....cciiiieeiiieecieeerie e ettt et st e e s ae e e st e e s teeesataeesabeessstneeessnnsssseaeeens 268
atrshmlog_eITOr_COMMECT_L.......coviiiiiiiiieeiieieeieeet ettt te et st e e s sabe e e e ba e e sabaeeenaes 268
atrShmlog@_ eITOT_COMMECT_2.....ccicvuiiieiieiiieeiiieeeiieeesteeesteeesateesssseesssneesssneeeessssssseaeessssnsseeeeens 268
atrshmlog_error_init_thread_local_T.........cccccooviiiiiiiniiiiiiiieeeeeeee e 268
atrshmlog_error_mem_to_ShIM_ L.......ccoovuiiiiiiiiiiiiiieceeceee ettt e e s aaee e e e 268
atrshmlog_error_mem_t0_SHIM_2.......ccccoiiiiiiiiiiiiiieeieee ettt 268
atrshmlog_error_mem_to_ShIM_3........cccciiiiiiiiiiiiiieeeeec et are e e e 269
atrshmlog_error_mem_to_ShIM_4.......cccooiiiriiiiiieieeteeeeee ettt 269
atrshmlog_error_mem_to_ShIM_5........coocuiiiiiiiiiiiiiiececeece et e s s are e e 269
atrshmlog_error_mem_t0_SHIM_6........ccceeviiriiiiiiinieiieeieeeee ettt 269
atrshmlog_error_mem_t0_ShIM_7........coouiiiiiiiiiiieiieccte et e s s are e e e 269
atrshmlog_error_mem_to_ShIM_8.........cccoiiiriiiiiiiiieiieieee ettt 270
atrshmlog_eITor_attaCh_T.....cccuiiiiiiiiiiieeieeeteccte ettt e sre e e sre e e e s s saba e e e e e snsraaeeees 270
atrshmlog_eITor_attaCh_2.......ccceivuiiriiiiiieeieet ettt ettt e st e e s ane e e e aeeas 270
atrshmlog_eITOr_attaCh_3......ccuiiiiiiiiiieeieeeteeete ettt sre e e ste e e e s s esba e e e e e snasraaeee s 270
atrshmlog_eITOr_attaCh_d........cc.oovuiieiiiiieeieet ettt ettt e st e e s abe e e eaeees 270
atrshmlog_ eITOr_attaCh_5.....cccuiiiiiiiiiiecieecteeee et ettt e e s s s eabae e e e e ssanraaeee s 271
atrshmlog_eITOr_attaCh_B........ccueevuieriiiiiiinieeiteeeetee ettt ettt e e s aae e e s 271
atrshmlog_error_init_iN_ WITTE_ L....cucireuiiiriieieiieieieeeeiee e et srre e ste e sae e s saaae e e e s esnaanaaee s 271
atrshmlog_eITOr_WITTEO_L......ciouiiiiieiieiieeieertee ittt ettt e s et e st esaeesaee e e e e 271
atrShmlog_ eITOTr_WTILEO_2....ccuviiriiieeiieeeieeeeieeeeie e et e et esete e st eesbe e e sbeessaseessneeessstaesnnnaeaeas 271
atrshmlog_erTor_WITTE0_3......coouiiriieiienieeieerteete ettt ettt ettt st et e s b e saeesabeesae e ane 272
atrShmlog_ eITOr_WTILEO_4....c...viieiiieeiieeeiieeeiee et et e et e eerte e st e e sbe e e s beessaeeessasaessnsaessnnaeaess 272
atrshmlog_eITOr_WITTEO_5......eivuiiriieiierieeieerteeeeee ettt ettt ettt e st e s e s e e e e 272
atrShmlog_ eITOTr_WTILEO_6....cccuveireieeeiieeiiieerieeesiee et e et sre e st e e st e e sbeessaeessataessaseesneaeaees 272
atrshmlog_eITOT_WITTEO_7..c...iiiiiieeiieeieeieeetee ettt ettt ettt et e st esae e st e e e e e 273
atrshmlog_ eITOr_WTItE0_8........ueiiuiiieiiieiiieeeieeeetee ettt e et e s sae e s saee e ssaaaessnnaaee s 273
atrshmlog_erTor_WITTE0_O......ccouiiiiiiiieieeiteeteeeee ettt ettt et s e e e e 273
atrShmIOg eITOT_WTILE T _L...iiiuiiiiiiieeiieeeiieesieeeste et e et e st e e st e e sbe e e sbe e s sabeessssaesnnsaesnnnaeaess 273
atrshmlog_eITOT_WITTET_2......iiiiiiiiiiiieieeitertee ettt ettt et e st et e st esaeesate e sae e ane 273
atrShmMIOg eITOT_WTILE 1 _3...iiiiiiieiieeiiieeeiieesieeeeree et e et este e st e e st e e s bt e e sabeesssaeesnssaesnneaeeess 274
atrshmlog_eITOT_WITTE T _Z.....iiiiiieiiieieeiteetee ettt ettt et st et e st e bt e sabe e aae e ane 274
atrShMIOE eITOT_WTILE 1 _5...iiiiiiiiiiieiiieeriie ettt site et e e s e e s be e e aaeessateessataesnnnaaeees 274
atrshmlog_eITOT_WITTEL_B.....eeiuiiiiiiiieieeitertee ettt ettt ettt e st esaeeste e e e 274
AtrSNMIOE EITOT_WTILEL 7. eiiiiiiieiiieeiieeeieeesite et e et e et e e rte e st e e st e s sbeeesaveessneaessnsaesnneaeaeas 274
atrshmlog_eITOr_WITTE1_8......iivuiiiiieiieieeitetee ettt sttt e sae e st e e 275
atrShmlog_ eITOTr_WTILE1_O...ciiuiiiiiiieiiieeeiieeeee ettt e st e e ae e s sate e ssateesneaaee s 275
atrshmlog_erTor_WITTe1_10.....cciirieiiiiiieeieerieeieeee ettt ettt st et e st esaee st e e e e 275

atrshmlog_ eITOr_WTTLE 1 _11....ciiiiiiiiiiieieiieerieeeeiee ettt e eae e s aae e s ate e s be e e saaeesataeesssnnneaeas 275

atrshmlog_eITOr_WITTET_12....cccuiiiiiiiieieeiterie ettt ettt et ettt e st saaesabe e bee e 275

atrShMIOE eITOT_WTILE2 _L...iiiuiiiiiiieeiieeeieeeeite et e eeteeesreeste e st eesbeeesbeeesaseessnsaesnnsaesnsnaeeeas 276
AtrShmlO@_eITOT_WITTE2_2.....eiiiiiiiiiiieeieeiteetee ettt ettt s bt et e st e st e st e e st e sase e sae e anee 276
atrShIMIOE EITOT_WTILE2_3...ciieiiieiieeeiieeeieeeniee et e et e esteesriteessaeeesbeeesbaessaseessssaesnnseesnssaeeens 276
AtrShmlO@_eITOT_WITTE2_Z......oiuiiiiiiiieeieeiterte ettt ettt st et s bt et e s b e e st e sabeesaeeanne 276
atrShMIOE EITOT_WTILE2 _5...iiiiiiieiiieiiieeeieeesite et e et e et esete e st e e sbe e e s beeesaseessssaesnnseesnssaeeeas 276
AtrShmlO@_eITOT_WITTE2_B.....eeviiiiiiiiieieeitesteee ettt ettt et st et e s b e e saaesabe e sae e ane 277
AtrSNIMIOE EITOT_WTILE2 7. eeiiiiiieiiieeiieeeieeeeite et e et e e bt essiteesaeeesbeeesabaeesaseessssaesnssaesnssaeeeas 277
atrshmlog_eITOT_WITTE2_8......ciouiiiiieiieieiiteetee ettt ettt ettt e st esae e s teesaae e 277
atrShmIOg_ eITOT_WTILE2_O...ciiuiiiiiiieiiieeiiieesee ettt ettt e et e e st e e s bt e s abeessabeessaaaesnnnaeeees 277
atrshmlog_erTor_WITTe2_10.....cciiiiiiriieeieiieerteee ettt ettt sttt st e et e st e s saaesate e saeeaene 277
atrShmlog_ eITOTr_WTILE2_11.....ciiuiiiiiieiiiieeriteeette et e sere e st e e ste e s seae e sateesbeeesvaeesasaeessssnnneens 278
atrshmlog_eITOr_WITTE2_12....cccuiiiiiiiieieeiteete ettt ettt e sttt e st e sat e st e e saaesase e sae e aee 278
atrshmlog_error_area_VerSiON_L........cccccueeirieeeiieeiiieesieeeereessieeessieeesaeeesaeeessneesssneesssseesnnnes 278
atrshmlog_erTor_area_COUNT_L........coceirierieiriienieeiteeie et este et s et esaae s bt e e s sabaeesaseeesnneas 278
atrshmlog_error_area_ich_habe_fertig 1..........cccoovirviieiiiniiiiiiciiceeeceee e 279
atrshmlog_eITor_get_eVENT_ L.......cccceciiiriieriieiterie ettt ettt st saae st e e s saba e e sanaeesnneas 279
atrshmlog_error_get_logGING 1......ccccceeriiieiiiiiiiiiieeiieectecete et et e e see e et eesaaeessaaeesssseneeas 279
atrshmlog_error_get_loGGING 2.......ccoociiiiiiriiiiiienieeitete ettt et ae sttt aesbeessaeeenane 279
atrshmlog_error_get_loZGING 3......cccceiriieiiiiiiiiieeieeeteeete et ste e e steeesae e e saaeessaaeessasnneeas 280
atrshmlog_error_get_loGGING 4.......cccooviiiiiiriiiiiienieetete ettt ettt e st e sbae e e 280
atrShIMIOE_ EITOT_CTEALE_1....ciiuiiiiiiieiiiieeiteeeiteeete et e st e e st e e s e e e sereessabeee e e ssssaaaeeesnnnsaaeeeas 280
AtrShMIOG_EITOT_CTEALE_2......iieuiiiiieeieeiieeieeiteete et e sttt e st e s bt este s bt e sasesssbaeessabaeesnseeesnnneas 280
AtrShIMIOE_ EITOT_CTEALE_3....ciiiiiiiiiieeiiieeeiteeeiteeeteeeit e e st e e steeesaeeesareessabeeesesssnseaaeeessnnseneeens 280
AtrShMIOG_EITOT_CTEALE_A......eiiuiiiiieeieeiieeieeite ettt et e st e e te e st e st e e sabe s s bt e e s sabaeesnnaeesnnneas 281
atrshmlog_error_init_ShIM_ L.......coooiiiiiiioiieeeceeceeee ettt e e e s sraeeeeeas 281
atrshmlog_error_init_ShIM_2.........ccccoiiiiiiiiiiiee e 281
atrshmlog_error_init_ShIM_3.......cccoiiiiiiiieeeceeeee ettt s e e e e e eas 281
atrshmlog_eITOr_TeAA__L.....cccuiiiuiiiiieiiieieeeeeete ettt sttt e bt esba e e s abaeesnaes 281
atrShmIOg_ eITOT_TEAM_2......cciviuiiiiiiiiiieeeieeeie ettt e e e ste e e sar e e e saaeesaaeesaaaeesesssssaaeeens 282
atrshmlog_eITOr_TeAM_3.....ccc.iiiiiiiiiiieeieeteeee ettt ettt ettt sabe e e s abaeesaaee 282
atrShmIog_ eITOT_TEAM_4......ccovuiiiiiiiiiiiee ettt re e e sate e s sib e e s saae e saaeesbaaeesenssssaaeaens 282
atrshmlog_eITOr_TeAM_D.....cccueiiiiiiiiiieeieeeeee ettt ettt e be e e st e e esaee 282
atrshmlog_error_read_fetCh_T........cooiioiiiiiecieceeeeeeee ettt e 283
atrshmlog_error_read_fetCh_2.........oocoooiiiiiiiiie e 283
atrshmlog_error_read_fetCh_3........cooiiiiiiiiececeee ettt e 283
atrshmlog_error_read_fetCh_d.........oooooiiiiiii e 283
atrshmlog_error_read_fetCh_5......c.oooiiiiiiiiececeeee et e e 284
atrshmlog_eITOT_VeTifY_L.......ooouiiiiiiieieeteee ettt st e e 284
AtrsShmlOog_eITOT_VETIfY_2...c..uiiiiiiiieiiecieeeeee ettt ettt e et e e e eae e e et e e e ennes 284
atrshmlog_eITOT_VeTify_3.......ooouiiiiiiieieeeee ettt st e e 284
AtrshmlOg_eITOT_VETIfY_...c..oiiiiieiiieiieeieeeeee ettt ettt et e e e ate e e eaaeeeennns 285
atrshmlog_eITOT_VeTifY_5....c.ciiiiiiiiiieieeeee et 285
AtrShMIOG_eITOT_VETIfY_B...cuvieiiieiiieiiieeieeiteete ettt ettt r e et e e e tae e e et e e e ennns 285
N 1210] (o TS 286
atrshmlog_CcouNter_time_LOW.......ccccuiiiiiiiiiiieiriieceiee ettt ae e e s e e e sabeessaeeeas 286
atrshmlog_counter_time_high..........ccooiiiiiiiiiiiiiiieteeee e 286
atrshmlog_ CcouNter_attacCh........cccuieiciiiiriiieieiieeeeeecee et sae e e s s s saaaeeeeeas 286
AtrShMIOZ_COUNLET_GOT_TAW..ciutiiriiiiiienieeitente et ettt e site st e sate e bt e satesbeesatesbeessaesasaesasaeeennns 286
AtrShIMIOG_COUNLET_fTOE.....c.uiiiiieiieeiieeeeeteeete ettt ettt re s ea e e sta e e e saae e e enbaeeensaeeennes 287
atrshmlog_COUNLET_AllOC.........ciiiiiiiiieiiieeteeteeete et sttt e st e e 287

atrshmlog_counter_diSPatCh.........ccueiiiiiiiiiiiiieceecetece et e e e e e rae e e s 287

atrshmlog_counter_mem_t0_ShIM.........ccceiriiiiiiiniiiiieieeeere ettt 287

atrshmlog_counter_mem_to_Shm_dOit........cccccueiriieiniiiiiniieiniieceeceeceeere e 287
atrshmlog_counter_mem_to_shm_full.........cccccooiiiiiiiiiiiiiiieee e 288
atrshmlog_CcouNter_Create_SIaVe.........ccuieeuieiriieiniiecrieeeieeete et re e s stae s e s araaeee s 288
AtrShMIOZ_COUNLET_STOP....ceevieiieeiieiieeieerite ettt sttt e et e st e e bt e st e e bt e sabeesbeesabeessnneeessnneas 288
atrshmlog_ COUNTEr_WTILE0........civuiiiriieiiiieeriee et e et e e ste e e ste e s tteesteeesbaeeeesessnbeeeesennnsaaeeens 288
atrshmlog_counter_write0_abortl.........cociiriiriiiiniiiiiiieccee et 288
atrshmlog_counter_writ€0_abOort2........c..ceecuieiriiieiniiieiniieerieeesieeesreeesieesseeessareeeeeesnnenaeees 288
atrshmlog_counter_write0_abort3.........ccceiriiiiiinieieiiecteeecee e 289
atrshmlog_counter_write0_abortd...........coecueeiriiieiniiieiriieerieeerie et eesieeesae e s sareeeeeesaaanaeees 289
atrshmlog_counter_write0_diSCard...........ccecuerruierieriiienienieerie ettt 289
atrshmlog_ couNter_WITtE0_Waif.....cc.eeeruieerrieerriiieerieeisieeerreeesreessireessaeeesaeeessaeesseeessseesnsseens 289
atrshmlog_counter_write0_adaptiVe..........cccueeruierieriiienienieeiecie ettt 289
atrshmlog_counter_write0_adaptive_fast.........cccceeveerviierienieiiieeiecieeeie et evee e eve e e 290
atrshmlog_counter_write0_adaptive_very_fast.........ccocceeveeriiriiinnieniieeieeieeeeeiee e 290
atrshmlog_counter_write_safeguard............ccooieeieeiieiiiciicciececee e 290
atrshmlog_counter_write_safeguard_Shim..........cccceeviiriiiiiiniiniiieeeeeeeee e 290
atrShmMIOg COUNTET_WTILE L.....uviiiiiieiiiieieiee et ettt e et e e st e e s te e e s tae e e e s e sasaeeeesensnnnnaeeeas 290
atrshmlog_counter_write1_abortl........ccociiriiriiiiniiiiiieetee et 290
atrshmlog_counter_Write1_abOort2........c..ceecieiriieiniiieirite ettt e ssreeesteeesre e s sseareeeesesesenaeees 291
atrshmlog_counter_write1_abort3.........cociiriiiiiinieneeeetee et 291
atrshmlog_counter_Write1_abortd...........covcuieiriiieiriiieiriieeriee et e st e esteeesae e s sseareeeeeesaaenaeees 291
atrshmlog_counter_write1_diSCard..........cceevuerruierieriiienienieerte ettt 291
atrshmlog_ COUNtEr_WTItE 1 _Waif.....cueerruieeriiieiriieerieesrieeesreeesreesareesaeeesaeeesbaeesbaeessseesnanaeas 291
atrshmlog_counter_write1_adaptiVe..........ccceeruierieriiienienieeie ettt e e 292
atrshmlog_counter_write1_adaptive_fast.........cccceevuervieeiieeieiiieeieecieeete et esvee e eve e 292
atrshmlog_counter_writel_adaptive_very_fast.........cocceevieriiriiinnieniiieienieeeeeiee e 292
atrshmlog_counter_wWrite1l_abortS.......ccuiirvieiriiieiiiiieirieeeriee et e este e ere e s sire e e e e e saarnaeee s 292
atrshmlog_counter_write1_aborth.........ccceiriiriiiiniiiiiiieeceee et 293
atrshmlog_counter_Write1_abOrt7.......ccueiecuieiriieiniiieiriieeriee e ssreeesteesae e s seareeeeeesesrnaeee s 293
atrshmlOg_COUNTET_WTTLE2.....cc.uiiuiiiiieriieeieete ettt et ettt te e st e s be e e st e e sbaeeeabaeeenaes 293
atrshmlog_counter_Writ€2_abortl........cceeecieiriiieiniiieiiieeerieeeriee e e esteeeeeesseareeeeeesnnenaeeens 293
atrshmlog_counter_write2_abort2..........cceiviiriiiiniiiiiiieeeereee et 293
atrshmlog_counter_wWrite2_abort3........c..civvieieiieiniiieirieeerieeesieesrreeesreeesae e s saareeeeessssenaeeens 294
atrshmlog_counter_write2_abortd.........cccooviiriiiiniiiieiieetere et 294
atrshmlog_counter_write2_diSCard..........cocvueerruieeriueerriiieinieeniieeeteeeteesreeesbeeesaeesssereeeeeens 294
atrshmlog_COUNLEr_WITTE2_WaIl.....c.eerieriiierieeiierie ettt ettt ettt st e et e e beesaaessae e 294
atrshmlog_counter_write2_adaptiVe........cccceercuieeriiierniieiiieeerieeeteeeteesreeesteesseeesssareeeeeens 294
atrshmlog_counter_write2_adaptive_fast.........ccceevieriieriiiniieiiierieeiteste et 295
atrshmlog_counter_write2_adaptive_very_fast.........ccccceevuierieriieerieeiiieneeeieece e 295
atrshmlog_counter_write2_abort5.........coouiiriiiiiiinieeieeieetee et 295
atrshmlog_counter_wWrite2_aborth........c..ceecueeiriieiriiieiriie et eeste e ere e s saae e e e e esaraaeees 295
atrshmlog_counter_writ€2_abort7.........cocieriiriiiinieiieteeeeeee et 295
atrshmlog_counter_set_Slave_COUNL.........coecuieiriueeiriieeerieeerreeeeteeesteeeieeesseeeesseseeessssnssseeesenns 296
atrshmlog_counter_set_ClOCK_id........cocueeruiiriiinieiiieieeeeeeeete ettt s 296
atrshmlog_counter_slave_Off............cooiiiiiiiiieieceeceeee e e 296
atrshmlog_counter_set_event_lOCKS...........cooieeiiirieniiiiiieieceect ettt 296
atrshmlog_counter_set_buffer_Size..........ccceeieeriieiieiiecieeeecee e 296
atrshmlog_counter_set_wait_SlaVes_OM.........ccceerieriiieriieniiienie ettt 297
atrshmlog_counter_set_wait_slaves_off...........ccccirriiriiiiieiiieeeeeeee e 297
atrshmlog_counter_set_Slave_Wait.........coceerieriernieniieeitenie ettt ettt e e s e e e 297

atrshmlog_counter_set_prealloC_COUNL..........covvviiiiiiieiiiieiieecreeeee e s 297

atrshmlog_counter_set_thread_fence............ccocueirieiiiiirieniiiieeeeetee et 297

AtrSNIMIOE COUNTET_CTEALE......ueieuieeeiieeeiieeeiteertte et e e steesste e e eeessateesbaeesaeeesasaaeessssnsssaeesanns 297
atrshmlog_counter_create_abortl.........cociiviiiriierieniiienieeeeee ettt e 298
atrshmlog_counter_Create_abort2........c..ceeuieeriieeniieeeriee e et e eteesseeesreeesreesseaesesssnnaaeeens 298
atrshmlog_counter_create_abort3.........cociivieiiiiriieiieieeeee ettt 298
atrshmlog_counter_Create_abortd...........coeviiiriuieeriieeniieeeriee e e srreeeeeesreeesreessreesesssssaaeeens 298
atrshmlog_counter_delete..........oouiiriiiiiiiiieeeee ettt 298
atrshmlog_counter_cleanup_lOCKS.........cceiruiiiiiiiiiiiiiieccteceeceee et e e 298
atrshmlog_counter_init_ShIM.........coooiiriiiiiiiiee e 299
atrShmlog COUNTET_TEAM........cueiirrieiiiieiiiee ettt ettt e s te e e ste e e sateeesaaeesssaeesssnnsnaeas 299
atrshmlog_counter_read_dOit.........c.eerieriiiiniieiiieie ettt ettt 299
atrshmlog_counter_read_fetCh...........ccviiiiiiiiiiiciieeeeceeeeee e 299
atrshmlog_counter_read_fetCh_dOit........c.coocueeuiiniiiiiiieeieeeeeee e 299
AtrShmMlOg_COUNLET_VETIfY.....ciiiiiiiiiiiieieecieeeie ettt ettt e e be e saae e e enaaeeesnnnes 300
atrshmlog_counter_logging PrOCESS_OMN.......cccevuierieriueerieriiienieeieestessieeeesrreeesseeeesseeesnees 300
atrshmlog_counter_logging_ process_oOff..........ccociieiiiiiiniiiiiieceeee e 300
atrshmlog_COUNLET_SEt_STrALEZY....cueerureririerierieerieeiieestesieestesrseesstesseesstesseesseesseesssesssaennns 300
atrshmlog_counter_Set_Strategy_PIOCESS.......cccveerrreerrrueersiueersreessseesssseessssesssseesssseeessseesssssees 300
atrShmlOg_COUNLET_SEt_BVENL......ceiiuiiriieriierieeieerte et este et e sitesteesite s st esstesbeesaeesseesssessaennns 300
atrshmlog_counter_set_env_PrefiX.......ccoiiiiiiierieeiiecieceeee e 301
atrshmlog_counter_eXit_CleamUP.........cceevueerierriirnieeieerte ettt ettt e st e e e be e e e sabae e e 301
atrshmlog_counter_fIUSh.........coiiiiiiiiiieceee e s e 301
atrshmlog_counter_logging_process_off_final............ccccorviiiiiiniiniiiniieeeeeeee 301
atrshmlog_counter_turn_logging off...........cccoveriiriiiiiiiecee e 301
atrshmlog_counter_init_in_advanCe_0MN..........cccceevieriieriiienieiiienieeieeste et siee e 302
atrshmlog_counter_init_in_advance_off.............cccviriieiiiniiiniieeceeee e 302
11 0 L < RO P PP PPPPPPPPPPPPI 303
atrshmlog_strategy_diSCATd.........c.uiieuieiriiieiiiie ettt re e e s e are e e e s e seaaaaeee s 303
atrshmlog_strateg@y_SPIN_100D......ccciiriiriiiirieeiierte ettt ettt et e e e 303
AtrShMIOE StrAteBY_ WaIl....cceeuieiriuieiriieeiieeeriee et e ete e st e e stee e s et e ssteeesaaeeesaseessssaaeessanssssaeeenns 303
atrshmlog_strateg@y_adaptiVe.........cocieeieerieniieiieeie ettt ettt sbe e s te et e st e sbeesseesaee e 304
atrshmlog_strateg@y_adaptive_faSt..........cccecueeiieeiieeiiieiiecieesteeie et ere e sre e e e esaeaeenns 304
atrshmlog_strategy_adaptive_very_fast........ccccceevieriiiriieniiiinieniteriect ettt 304
ENVIrONMENt SETHINE.....cciieiitetiiriiieeieiitteeeeiiteeeesiiteeeesiteeeessraeesssaraeesessssaeesssssseessssseeesssssssnssnnes 305
ATRSHMLOG......coutiitetieteteeteetet ettt ettt sttt et e b et e sat e be st sase e ssaeesaseesaneenanes 306
ATRSHMLOG_ID...tiiiiiiiteieeeeteste ettt ettt sttt et sbe et st e s et et e st e saeesabeesaneesans 306
ATRSHMLOG_COUNT ...ttt ettt sttt ste st e steesaeessesssaesssasaesssseessnssaessnnees 306
ATRSHMLOG_INIT_IN_ADVANCE......ccoottetteeieeiteesieeitesteesteeseeesseesssesseesssessseesssssessnns 306
ATRSHMLOG_STRATEGY ...ttt ettt ettt et st site st ssaaessaesatesseesnaaesnns 307
ATRSHMLOG_STRATEGY_WAIT_TIME......ccottiieeieeieeieetteete ettt e v esvee e svea e 307
ATRSHMLOG_DELIMITER_VALUE......ccitittiiiiiteteeteteeeteste ettt st s 307
ATRSHMLOG_EVENT_COUNT_MAX....oiiitieiieerieeieerieesieesteesseesseessseesseessseessseesssssessanns 307
ATRSHMLOG_BUFFER _SIZE.......cootiiiiitiieeteteeteete ettt ettt et sseesasae s 308
ATRSHMLOG_PREALLOC_COUNTutiitieitieieeiteeteereeseeesteestesreessneeveeseaessseessssaesnns 308
ATRSHMLOG_SLAVE_WAIT_INANOS ...ttt ste ettt steessbeesssne e 308
ATRSHMLOG_SLAVE_COUNTttiiiiiiteiecteesteeieestteeteeseessaeesreesseessaessaesssseassssneasnnns 309
ATRSHMLOG_WAIT_FOR_SLAVES_ON....cooitiitieitiiteeiteiteeieeitesteesieeseeesireessinee e e 309
ATRSHMLOG_CLOCK _ID.....ciiittieieeiieeieeieesteeteeseesteessseessesssessseesssessssssessssssesssssesssnses 310
ATRSHMLOG_FENCE_1 10 131 ittt sttt te et saessiee s s sata e s siaeessaeaesssneas 310
ATRSHMLOG_LOGGING_IS_OFF_AT_STARTcuttitieieeieeeeeieecreeteesee e vveeesvnee s 310
ATRSHMLOG_EVENT _NULL....cooittitiiitiiteeieeiteee ettt st ste st e s sesseesaesssaesanees 311

ATRSHMLOG_EVENT_ONOFF......ccoooiiiiiiiiiiiiiiiiiiircctcnccit et 311

ATRSHMLOG_FETCH_COUNTcooiiiiiiiiiiiiniiiiteceitccre e ce e 311

ATRSHMLOG_WRITE_COUNT ...ttt ettt et eeraaee e eeaveeeeessaaeeeeeansreeeeeee s 312
ATRSHMLOG_ALLOC_ADVANCED ..ottt et eeevee e e nnnaaaaeeeees 312
Functions to use before attacCh............ooovviiiiiiiiiiieeee e 313
atrshmlog_Set_enV_PrefiX.......coociiriiriiiiieeieeeeeee ettt sttt e e 313
atrshmlog_set_event_l0CKS_IMAX.......ccecuiiriieiiiieiniie et erieeseiee e e esteesee e s saare e e e s esnsanaeee s 313
atrshmlog_set_DUffer_SiZe........ccoviiiriiiiiiieee ettt 313
atrshmlog_set_f_list_buffer_slave_COUNL............cccveriiriiiiiieeiieciece e 313
atrshmlog_Set_CloCK_1d........ciiiiiriiiiieieceee et 313
atrshmlog_set_wait_for_slaves_ON........ccceccuieiiieeiieiieeieceeee e 313
atrshmlog_set_wait_for_slaves_off..........cccooriiiiiiie e 313
atrshmlog_set_f_list_buffer_slave_wait.........cccceeeieriiieriieiieciiececcieecre e 313
atrshmlog_set_prealloc_buffer_COUNL...........cccoeviiiiiiriiiiniieceee e 313
atrShmlog_ Set_StTate@y_PIOCESS.......ueeeeueeeriurerrireeerireessreessreessreessssesssssessssseessssesssseesssseessssees 313
atrshmlog_set_thread_fence_1 to atrshmlog_set_thread_fence_13........c.ccoccveiriiiiininnnnnnee. 314
atrshmlog_set_init_buffers_in_advance_on..........c.cccceieeiiriienieeiieniecee e 314

atrshmlog_set_init_buffers_in_advance_off...........ccccoriiriiiiiiniiinieee e 314

Introduction

As always...

The usual chapter you won't need to read

As T had the luxury to read a book about the korn shell I stumbled over a very unusual intro. The
guy addressed the need for such a thing to be — not there. Simply put: no one reads today such a first
chapter without info.

So what ? I still think I have to start somehow, so this is my try.

Everyone who has made development in the software business had at some point to do some thing
that we loosely call logging.

To be a bit more specific, there was in the early days of computing a time when a program had to
run without interaction with a user. So the programs who crashed or did some minor damage were
a real pain in the ass.

No way to get information about what went wrong — so the guys started to do the write to a special
place thing. Write at this address in memory a 1 or 2 and when the thing crashed check for the
values in the places to see what was done and what not

OK. Then the first problem oriented languages arrived at the scene, and the guys who wrote
programs changed. Before you could have easily mistaken them for doctors or people of the
scientific stuff — wearing white was in at those days. Perhaps it was really some kind of BLACK
science to make a program run. Or a library. Or an include, or or or

But from then on the guys thought no longer in terms of memory addresses and bpl and js codes,
but more in equations and something that was a similar thing for nearly all languages, the
assignments. And of course string handling.

And so the way to find out what the problem was when the program didn't do what it should was to
write some information on a thing called the console.

This was a special kind of file in fact. You could code your program, let it compile, then run and
after this you got not only the output for your program, but also the output of the console while the
thing was running.

This was a big step into a new direction — you could now wear normal clothing, no more white
dress....

And then it came to the idea to make that console thing even some kind of working in two
directions. The input for the program was no longer a thing of using files, but now also a thing to
make so called input statements in the program that could take information from the console and
deliver it to the program when it needed it.

In fact this was simply a two file approach, with one getting the output and the other holding the
input, but it was nearly as if you could now talk to the program.

Wow. Interaction by using files but it worked, and then when the time came to try the real thing
— making the OS of the system giving real key strokes from real users to a program, that in return
gave output to a thing that was readable for the user without wearing a white cloth — a new
understanding of the use of the console began.

It was the time when the guys changed again. This time they were some highly misunderstood
geeks who looked Star Trek and discussed in their free time about making game programs and not
about the newest car of the president....

It was time for the so called real time operating system with multi user capability.
So the console became the place where god — or root — could talk to his child and get its answers.

Sometimes the so called super user could give his new thoughts to the thing, sometimes give it a
boost for processing time, and sometimes even set it to sleep .

All with the use of the console, which was now the preferred way to interact with a program.

OK. Now the guys from the processor guild came in, and when they saw how this console thing
worked they instantly implemented in their processors special instructions, so that god — or root —
could faster speak to the program. The CPU of this time had special IO ops for CIN and COUT .

And this could have been a nice and prospering finish, if it weren't for the guys from Xerox which
invented the GUI and the stuff that today stands between nearly every user and his program — the
Desktop or touch thing metaphor to handle things without having a console....

Back to reality.

Today we have 99 % of the users of computers in a shape that is far from everything that was
needed to use a computer in the first 50 years of their existence. So the metaphor of the desktop and
the today touch screen analogon is clearly the way these want to communicate with their programs.

The console is still living in the areas of program development and operating background systems
like databases or today's application servers.

So we use today the console mostly in the area of IT pros who have the need for a direct
communication without any good looking GUI ballast.

If you are in this business, you know why its a good thing to have a console — mostly for inspection
of the things the program in question does, sometimes to interact while it is running. Sometimes to
even kill it. And most the time to automate things with a scrpt language then.

Today you can get access to a console on every so called UNIX derivat, even the Android and the
Mac OS X systems, and if you insist for the so called fenster;plural systems too.

So for the pro the console is a vital thing, and for the rest of the users something they don't need at
all.

Back to logging.

For most programs its a fact that they produce a lot of output on a console. So this thing is simply
not the right one to hold that much information. Its better to use a log file.

Files for logging were near the same time introduced thing with the console.

While the console is for interaction and lets say starters in business, the log file is for the long term
the better thing.

OK, its ugly to keep all there files in place for inspections, and even worse its not clear if you get
what you want — or need — but its the only way to do it else. So the log file is the one thing every
system developer and operator has to know. And has to use.

Logging is in this sense the approach of the developer to give useful information for himself or for
other developers at a well defined place. And later the operators who know near all or nothing about
the system can try to get information from them too.

Logging is in this sense a time shifted one way communication from the developer to someone else
who has to figure out what happened in the program.

We usually use a file for this, and logging into a file is today as easy as making three lines of code
and then do what you think is needed to be done for the content to log.

So logging is even so important that the latest champion in the ring for application development got
its own well known file based logging module log4;.

Logging is the standard way to get info from your database if anything is not right, and from your
application servers, even from the OS itself.

This said, there is a small but very persistent class of problems that the file based logging cannot
solve. One is the logging of high speed applications, and one is the logging of crash systems.

This is the area where the approach of logging into a memory region comes again in place. It was
the first way to check for a broken program — writing at defined memory locations some codes —
and is in high performance environments the only thing that can be used to come up with the log
without slowing down the process to an absurd slow speed of file logging.

So there we are.

We need a log without a file in one of these special areas, and one is the area of programs that make
them self heavy use of files on a low level, like the shell programs does.

If you really want to log a fast system you will recognize that the logging itself can be a problem
bigger than the internal of the program itself — especially in multi threaded programs.

So if you need a log and you cannot use the files approach — here is an alternative.

If you need a crash log — well, that's different. Then you will be better suited with one of the many
shared memory buffer loggers from the internet community.

History first

This is for the first version.

Version 1.0.0

How it began, how it was revived, how it goes on

OK. The first time i had the idea was somewhere in 1991 when i made on an HP UX 7 system
several programs to simply check what was able to do with that new UNIX thing — at least for me,
who had only seen simple monitor based OS's and one super high class supercomputer with its own
front end computers that filled a whole floor at the university of cologne in the 1980's.

I had some trouble to get it right for a lisp interpreter — the thing crashed in more or less silly ways
and i could not find it right on the top with the debugger that I had — so I wrote some data to a
buffer in shared memory and when my program was long gone could check for its content with a
dumper.

Then I finished the educational stuff, and came into a company that made use of shared memory for
a complex cache system — it was horrible to see the guy who tried to do it right, and so i made
myself the plan to develop something better than the first thing to help — but it didn't came to that.
Only some raw sketches survived.

In 1997 it was time to catch up with a team that made some very interesting developments on the
newest IBM hardware driven by the AIX system. There they had the need for high speed logging —
and it was a multi thread system, too — and accepted my idea to make the logging not on file base,
but with a shared memory buffer and a dumper program.

It worked well. At least for this project.

After switching to new duties in new companies I didn't need the log — there were plenty solutions
in those projects, and I think at least three time the crash dump thing, and so I simply used the stuff
that was given for the logging from some senior programmers.

It was in early 2016 when the logging thing came up again. A project needed some help with
performance problems and stuff like debugging scripts in korn shell environments.

Logging from a shell is easy — use a file and echo to it. But logging without changing the scripts,
and worse not changing the file handler semantics is best non trivial.

So I gave the fact credit that the shell code was somehow open source and tried to make a logger
module for the thing.

Basic stuff was done in a week, and after doing some rough changes I got a thing that was an
internal log of the shell operations on a level where no set -x ever could reach ...

It was in fact a disaster when it came to a simple loop running a counter from one to a million. At
best one fifth of the speed. That was BAD.

So I started to make some additional effort for the logging — use of multiple buffers, use of alternate
buffer writing and in the last time some trials with buffered logging.

After seven months — the project had decided that it could live with the performance and never
needed an internal log — the thing was gone to a very different place. I now had alternate buffers
used for threads, supporting threads inside to do the housekeeping and a multi threaded queuing
reader that did make use of atomics all over the place. So much for comparison of this thing with a
crash dumper or a simple ring buffer write for a program.

It is now nearly end of 2016, and I have added at least basic support for the java user and the python
and perl and SWIG thing right after the thing is documented and made it to GitHub — perhaps
someone is really interested and can use it ?

Whom do we have to thank for this ?

The guys behind this module

Well, that's me in the first place. And of course the guys at DB Systel AG at Frankfurt am Main who
had the need for a korn shell programmer in the first place, namely Stefan Kiinstler and Thorsten
Beilke.

And there is the guy who always thinks in java terms when he discusses things with me, Dr.
Christoph Hoffner, who made the java thing a first target after the korn shell didn't make it.

The guys who have made it better

Well, that's for now only a placeholder. Give me a post card if you have any ideas in that way.
Perhaps you will see your name here in a later version.

The basics of the ATRSoft GmbH Shared Memory
logging module

This is the first must read chapter

The module is implemented in C. To be precise its ISO 9899:2011, that's C 11. The supporting
programs are implemented in C and C++ - some of them can be of C99 and C++11.

A C++ port is on my todo list. Comes later.

Use of any stuff in the module is free, its given to you with the perhaps least restrictive of all open
source licenses, the APACHE license. Please understand that this is done to make it possible for you
to use it in any environment you need to. It is not done to make you rich. So you can in fact sell this
thing for money, but you cannot change the fact that you are not the creator and so the thing is
owned by the company who sponsored most of its development.

This is the ATRSoft GmbH.

This will be the last time you see this name in the documentation. The letters ATR come from the
initials of the programmer who did it, and its a mere coincidence that the letters match to the first
three of the name of the company.

This is the legal section, so you can be sure now that you can use the module, even in a compiled
form in your production code, sell it together with it and don't have to plan for a big lawyer stuff in
the future. The only thing you cannot do is claiming you made it — that's all.

The module consists of a source code module in C — so its possible to make changes if you need
them. You have the control of the changes, and if they are good I will toke over them in the code
base — if you want it and it makes sense to me.

Why to build it

To make a long story short: I had bad experience with binary stuff on Linux over time. In the
beginning you have it easy — you build and check on some other flavors and that's it.

Over time things start to change. After some years even best crafted software was broken for the
build. Binaries simply throw bad references at the start up — or worse, didn't run after that or worst
did produce wrong results.

So a simple and robust approach for the build and source code was the answer. And yes, when its
source code its open source for me, too.

So no tree of binary artifacts that can be used out of the box — only some in the unsupported tree.

Instead a simple build with some scripts and that's all. Even the much loved fenster;plural system
can make it with the help of cygwin and mingw today to a real scripting paradise.

So building from source it is.

The ways to get a working module

We have to start with some definitions here, so that you can understand the rest of the
documentation.

Definition : BASEDIR

This is the directory you will unpack the tar ball or zip or download from GitHub. There is no single
root directory as you normally get, so its up to you to decide if you need it. I use an account as base,
so I haven't done the root directory. I don't need it. But its a bit messy there indeed.

If you are in a multi user system and you can create an account then simply do it. I have mine
named in short shmlog, so that should do it in most cases.

If you cannot make an account switch to a directory you can make the unpack thing and create an
own root directory.

In the documentation I will call this the BASEDIR.

If it is an account or a separate directory does not matter, but for keeping things simple you should
not use it for other things. The scripts are simple, and if you mix other things in it could end in a
mess, so please sent me no reports of failed builds when you do this with other systems code inside
the BASEDIR. I will ignore that.

If its needed I will refer to the thing simply as BASEDIR, meaning you can replace it with your
actual path to the thing and i will simply stay with that.

You will need rough 50 MB for the thing, and this is a big reserve for the build and a simple test.
When you plan to do a speed test its more in GB — the log of an atrshmlogtest03 can easy end up in
GB sizes....

Definition : Module

The module consist of the compiled code from the C source code files. The files holding its code
are atrshmlog.c and all sources in the impls subdirectory of the BASEDIR. After you have
unpacked the tarball or downloaded it you can find the files in src and there in impls.

We use the term module most of the time to refer to the compiled code, the C functions and data
structures.

There is sometimes a second C file in place, for example for java the jni file atrshmlogjnipackage.c .
This in NOT the module, even if it seems to act like it from the view of the user, in this case the
java developer.

Definition : Support program

There is a bunch of support programs. At least when you use the plain C code version, you have not
only the module, but also those programs in place. They are having the source code in the files with
the program name ending in the .c suffix. So its easy for you to talk about the source code and
meanwhile to actually think of the compiled program.

The exceptions of these are the scripts that use perl and shell. They are support programs in this
sense. But there is no c source code. Its the script itself that is executed.

Here is a list and a short abstract.

» atrshmlogcalc
The script to analyze converted output files of the log.

» atrshmlogcheckcomplete
The script to check the completeness of the source code distro together with the files.txt list.
* atrshmlogchecksystem

The script to analyze the kind of platform, architecture, flavor, compiler and cross-compile
you have in place.

* atrshmlogconv
The script to convert the binary log files from the reader into a human readable text file.
Works for a whole directory tree.

* atrshmlogconvert
The program that converts one binary log file into a human readable text file and optionally
create the thread statistics file too.

* atrshmlogcreate
The program that creates a shared memory buffer for use as a logging area.

* atrshmlogdefect
The test tool to show offsets in the area for variables and buffers and for making byte
changes for testing.

atrshmlogdelete
The program to delete a shared memory buffer, so the system can reuse the memory and the
given ID for the buffer.

atrshmlogdump
The program to read out the area and write it into a binary. IT only reads, it does not
change.

atrshmlogerror
The script to convert a list of error numbers into more readable information.

atrshmlogfinish
The program to clean up resources of the area so that you no longer use them and can delete
the area — or reuse it.

atrshmlogfork
The test program to check for working module in a fork clone.

atrshmlogforkwrite
The test program to check for working write to log in a fork clone.

atrshmloginit
The program to initialize a shared memory buffer with the resources that are needed to use
it as an area.

atrshmlogoff
The program to switch off the system wide logging via the flag in the area.

atrshmlogon
The program to switch on the system wide logging via the flag in the area.

atrshmlogreader
The program that is the simplest reader to make — now only a demo to see how you could
do it in your own code.

atrshmlogreaderb
The program that is using internal buffering and then writes out at program end — now only
a demo to see how you could do it in your own code.

atrshmlogreaderc
The program that uses multi threading for the transfer from area to file system — now only a
demo to see how you could do it in your own code.

atrshmlogreaderd
The program to transfer log from the area to the file system.

atrshmlogreset
The program to reinitialize the area if needed.

atrshmlogsignalreader

The program to set an information for a reader in the area.

* atrshmlogsignalwriter
The program to set an information for a writer in the area.

* atrshmlogsort
The script to combine log files into one text files on base of the folder that they are in and
ordered by the start time for the content in the resulting file — which has the fixed name
prot.txt.

* atrshmlogstat

The script to get a rough estimation about the time profile of your logging.
» atrshmlogstopreader

The script to stop the atrshmlogreaderd via signal.

* atrshmlogtee
The demo program to show a small but full working log client program that uses the
module directly.

* atrshmlogtest00
The demo of the simplest version of the use of the log — some kind of hello world thing.

* atrshmlogtest01
Test program to check for some of the functionality.

* atrshmlogtest02
Test program to check for additional functionality, and implemented in C++.

* atrshmlogtest03
Test program to check for the multithreaded logging and the impacts of configuration
values.

* atrshmlogverify
The program to check for the correctness of the area.

Definition : Library (THE)

The module is compiled and then a library is build. Its the library that holds the module binary code.
Its name is libatrshmlog.a and its a static link library. The footprint is rough 300 k , so I think you
can live with a static link. If you need a dynamic one check the script buddylib.sh and change it.

Binary versions will be no part of the distro for now. If you think you cannot live with this, contact
me and I will see what I can do for you. And don't forget to check the unsupported first....

The library is used in the linking of some programs, so it is also a test for using the thing.

You should use the library with your own code, but its also possible to link in the objects — just what
you need.

Definition : Headers

The module consists of the C source code. To work it needs not only the library, but also the two
headers atrshmlog.h and atrshmlog_internal.h. The headers have been there for a long time, because
I felt uneasy with doing all the structure and define stuff in an C file or put it in the interface
header. So the internal header was there to hold that stuff. For the interface as a client the
atrshmlog.h is all you need. See the demo programs atrshmlogtest00 and atrshmlogtestO1 for this.

If you really need more — you try to implement an own converter, or an own reader — you can use
the atrshmlog_internal.h header to get the info that you will need.

The most important thing you have to do before you compile the module is to set up the correct
defines in the headers, so check the adjustment chapter for this.

Definition : Build programs

The build of the module and the layers is mostly done with simple script programs. This has the
advantage that things are easy and you can simply adapt the module and the layers to your target
platform.

And there is no problem with any dependency stuff that could create inconsistent builds. We do it
simply from ground on up complete.

The disadvantage is that you can not use the classical approach — configure, make, make install.
There is simply no make file.

No make ?

Yes, no make.

The module has to be build complete — so a make is something you don't need in using the module,
only in development if you need the advantage of modularization of the build process. And you
need dependency's with a make — which is something that could be confused in a bad environment.

And yes, I had some rough time to get hands on the buildenv for the korn shell, and yes I had two
times bad luck in the past for programs I need and the make was simply no longer working.

So no make.

But for the development it showed that the compile cycle was so short that a dependency steering
was not needed. Simply build from ground did the job in less than 30 seconds (on a Linux box,
cygwin and mingw is a different story...).

So the build was made for the module with a central steering script.
Its the makeall.sh.

For the stuff that is at least suspected to be specific I created some helper scripts. So the compile of
the C source files is done with one script, the linking of the programs with another.

Later on the C++ programs came in and so I introduced a script for this too.

The direction is to make more scripts for the rest of the things that we need, one for the library, one

for the cleanup, one for checking the system capability's etc.

And we have one initial step with the execution of a variable setter script, the dot.platfom.sh.

This sets some basic info's for the rest of the scripts.

For a supported platform a version with the name of the platform is delivered in the BASEDIR too.

But for now we have only those scripts in the build

makeall.sh
The script that builds the module from ground up.

g99.sh

The script gets the C source name and delivers a compiled object code with the basename
and uses the C 11 compiler of your choice. Parts can be done in C 99 — which was the first
approach — but only C 11 can do all stuff.

g++14w.sh
The script gets the name of the C++ source and compiles it into a program, so the module is
linked as the library to it.

Ell.sh
The script gets the name of a program or its object file and links the object file with the
module object to the program.

buddylib.sh
The script builds the library after the compiler has made the object code files.

buddydoc.sh

The script starts the documentation creation process. For now it simply starts doxygen.

There are some files that are used from the makeall.sh to decide what to do, they are simple files

that contain only one name in a line and can be sees as the steering mechanism that makeall.sh does

its job.

The files are

shmbinfiles
shmbininternalfiles
shmcfiles

shmCPPfiles

That's a very strange system, but it does the job.

If you have to change it, simply leave the original in a copy tree, and make the changes for the files
in place.

The makeall.sh uses the bash shell as its interpreter, you can use a different shell by changing the
replacement codes for the new shell.

I tested the ksh version Version AJM 93u+ 2012-08-01 by simply changing the shell bang and it
worked. So if you don't have the bash try the ksh instead for it.

For the g99.sh, g++14w.sh and ell.sh the change to ksh works the same.

So if you cannot use a bash you can use the ksh instead. This should do the job for most UNIX's
that do not have a bash installed.

If you have only a shell — well, you get it. Change the replacement stuff to the old glory basename
replaces and you are in again.

For the fenster;plural system we use a cygwin in this document, so the bash is on board here.

If you really need to leave the path of the so called posix systems you can try to re-implement the
scripts with the thing you have on the platform. This is normally some thing similar to a shell that
execute script code. Of course you can use the multi platform script languages of your choice too.

In the later versions I hope to support perl and python.

If you really insist you can also use the command .com / cmd.exe things. Simply switch to the
syntax of the thing and do the makeall.cmd with it. Its not so much complicated, but i will not try
this for now. Simply don't have a working fenster;plural box with the compiler of it — and as long
the compiler does not support C11 I won't even try it.

Mac OS X should do the job with the on board shell — its a bash as far as I know for now.

For the rest: use your posix conform gnu upgraded system and make a run for the makeall.sh, take
the code from g99.sh, ell.sh and g++14w.sh and duplicate it and you are there.

Additional scripts are there too.
* Atrshmlogcheckcomplete

This is a perl script, you should need only the executable perl itself for it. It checks together
with the base info in files.txt for the existence of the files of the distro. You should run this
as the very first script after you have unpacked a distro.

* Atrshmlogchecksystem

This is a perl script, same as for the check complete. This script tries to figure out what your
platform is. This is done best after you have unpack the distro and tested for its
completeness.

¢ (Cleanall.sh

This is a little helper to get rid of generated stuff if you need to start from a fresh ground. Its
used best after you encounter a problem in the build and need to restart form step 1.

¢ seal.sh

This script makes the files in the tree read only. So you have a relative safety that your work
is not overwritten accidentally after you have done development in the tree.

¢ Unseal.sh

That's the thing you need to make all things writable in a tree, the opposite of the seal.sh.

e Packdistro.sh

If there is a need to pack the things together that constitutes the distro you can use this. In
case you have a nasty problem and no way to solve — pack the distro and then sent it to me
for analyze. At least a source code inspection can be done this way.

* The layer scripts

Every layer has its own additional build scripts. They are done in the layer chapters. So for
now I only mention that there are script too.

Definition : Helper

There are some helpers in the scripts. They are here to do things that you could do by a line or two
of code on the shell, but that would be more work than we want to do. Its most for the conversion of
files and the sort, but also the platform check and the completeness check and the calc are helpers in
this sense.

For the code I use what I think is best. So if you insist you can make a program instead. Or use a
different script language. Its up to you. But in the module I will try to use only the helpers for the
things I have defined above — bash and ksh for scripts, perl for the more complicated stuff.

Definition : Layer
Beside the use of the module in a C environment — which can be also the C++ environment as I

have it in my case on the x86_64 Linux systems with gnu compilers — there is a set of so called
layers .

They try to make the module usable for other language environments.

The most prominent is the java layer, which is based on the jni part of java. So I call it the jni layer.

There are more layers in this version, we have perl and python and for the SWIG to make these
happy that can make use of SWIG — its as far as I know a best supported C to anything else bridge
software. So you find there a tcl for example.

A layer consists at least of a thing that the target environment uses as the interface. In case of jni its
the java class that defines also the native methods. In case of the python it will be the python
module itself. For the rest I don't know for now.

Sometimes there is also an additional artifact needed. For the jni we need not only the java class,
but also the byte code and an intermediate layer implemented in C and — after compiler resulting in
- a library. So this is the jni library, don't mix it with the module library. You can check for the
names, [will try at least to use different names for the different layers — jni in the jni, py in the
python, pl in the perl and so on. So it should be possible to have all libraries in place and still not
end up in a mixed mess for linking and loading.

For other layers simply sent me a post card and I will see what I can do.

Definition : JNI Layer

For the support of the java community I have created a jni layer that reside in the BASEDIR sub
directory java. You have the basic parts in the sub directory src.

The layer is far from perfect, but it gives you at least access to the functions of the module. Be sure
you understand it before you try to chance things.

To make things difficult there are several java implementations, so I took the last one I had to deal
with — oracle jdk 1.8.0_66 — and gave it a start.

So you will find for my implementation in the java directory a sub directory oracle, there a
jdk1.8.0_66.

If I support different jdk's I will put the implementation aside in a vendor and version specific
directory, the rest will be hopefully the same.

For now I support
* oracle jdk 1.8.0 66 for fedora 23
* oracle jdk 1.8.0 102 for cygwin mingw
* fedora openjdk-1.8.0.111 for fedora 23

* IBM java-x86_64-80 for fedora 23

You find a bin and a doc and a src directory in there.
For the bin you find some scripts that help to implement the layer.
The scripts are there for reference, not for use.

In the doc folder you find some stuff that helps you at least to take the first step in making a jni

work. Its a simple tutorial, so you need to check for the documentation of the jdk too. But its a start

if you are new in the business to make jni, so don't ignore it if you are a newbie — like me.

In the src directory you find the needed stuff to build actually the jni layer.

The directory contains of the usual tree for the package the jni layer is located, the two classes that

are supported in this version, and the directory to hold the includes on C source side and the

directory to hold the resulting library with the jni bridge and at last the directory with the includes.

So the files are

dot.java.sh

The environment variables are set in the first step when you want to do something by this
file. So if you need a different environment setting change it. It mainly sets the
JAVA_HOME variable. For the PATH things are clear. There is also the name of the target
system, its the name of the include directory in the jni include directory.

create_jni_lib.sh

The script that does all the needed things in one run. You need to have the environment up —
best use the dot.java.sh for it — and the rest is then done step by step by the script. You have
to execute this after you have copied the library and headers in place.

atrshmlogjnipackage.c
The jni bridge code. This is mostly the hand crafted thing you develop after you got the
header from the javah tool. Be sure you know what you do if you change it.

compile_jni_stub.sh

The script to make the jni bridge together with the module into a loadable library. Its simple
and needs the new library as the first argument. The rest are the C source and library you
need.

compile_to_class_package_version.sh

The script that compiles the java class into the byte code file. The byte code is then used on
java side, while the bridge code is used from the native stubs to call the C functions of the
module. Making this simple is wrong, so check your jdk documentation if you need to do
something different.

create_header_package_version.sh

The script that created the jni bridge header file from the byte code of the class. Be sure you
know your jdk, then change it if needed.

start_package_log.sh

The script starts a simple test run. So you see how you have to handle the paths — there are
binary load, library load and java paths — and does the simple call to the test class main
method.

wrong_create_header_package_version.sh
Consider this a warning. You can call the tool in a different way, but the resulting header is
wrong — at least for me. Compare to the correct one. And then check for your jdk what you

need.

After this stuff you have the includes directory, that holds the module C source headers and gets the
jni bridge header from the create header thing.

Last is the package tree with the java code file for the class ATRSHMLOG and ATRSHMLOGTest
(how surprising ...) which are holding the Java class for the module access and the helper test class
to do some basic tests.

There is no further testing now, so stay tuned, in the next version I hope to do at least all methods
for the client and eventually a third class with better testings. But for now this is it.

Details to the layers are in the chapters for the layers.

Definition : The perl layer

The parts you need to make the perl interpreter using the module. In this case its the SWIG
definition file, the helper wrapper C code, the generated wrap C code, the generated pm file and the
shared library.

Definition : The python layer

The parts you need to make the python interpreter using the module. In this case its the module C
code file, the helper include for the module file and the shared library.

Definition : The SWIG layer

The parts you need to make the SWIG generating the things for using the module. In this case its
the SWIG definition file, the helper wrapper C code, the generated wrap C code, the shared library
and any optional file made for the target language.

Definition : The area

The module uses a shared memory buffer. This buffer is given from the OS with a special OS
dependent call. So you get a buffer at some address in your address space. This buffer has to be
initialized. So the buffer then contains sometimes resources that are bound via handles or structures
or simple pointers.

In the development I tried first mutex's, then condition variables, then atomics. All can — but must
not — have an OS dependent resource that is bound to something in the OS controlled memory. So I
decided not to combine the acquisition of the memory and the initialization. This is a thing that I
normally sell as separation of responsibility's to people who ask me why I did it this way.

And so I do this again.

Separate the responsibility's.

One thing is getting the buffer, another thing is the initialization, another the deinitialization — call it
delete, finally or whatever — and the last thing the delete of the buffer — which is indeed a simple
give back to the OS.

So I need a term for the buffer when it is initialized. This is different from the state when it is only
raw memory.

This is then the AREA.
Its simply the initialized and ready to operate buffer.

Keep in mind that it could be on a system that you end dead if you simply give back the buffer
without deinitialization.

For now I think that the use of atomics makes it harmless at best. So I skip the finish normally by
myself — but your platform could see this different. So check your documentation about the use of
whatever is used in the module if you are not sure. Or simply use the finish program and its
functionality.

Definition : The event

This is a bit stolen from the IBM world and the Oracle Database world. Its the meaning of “a place
in your target system where you log and its state”.

So an event is an location in the target system — for example the first thing in a C main function
after doing the initialization.

And it has a kind of state — actually I use a char of the C system, so in theory at least 256 possible
states.

In practice there are only two states. State 0 and state 1.
State 0 is non logging. So an event with state 0 does simply not log.
State 1 is logging. So the event will log.

In this sense its a kind of on off switch for a special log located at an defined point in your target
system.

To make this theoretical brabbel a bit more sense simply check the logging macros
ATRSHMLOG_WRITE in the atrshmlog.h header.

Definition : The environment

This means a special set of environment variables. The module uses a prefix and then different
suffix's to build the names that are needed. Its possible to set the prefix different, one way via
changing the modules define in a header, another using a function call before the initialization of the
process side module parts, and another with setting the one and only variable you should not set —
its the prefix itself and then its value is used as the new prefix.

So if you check in the module you will see that there is a get for environment variables that have the
prefix part in the name first (oha, that's a prefix !) and if you need you can make use things to
change the prefix. For the suffix its a define, so you are only having the option to recompile the
thing to change that. Of course you are then up to yourself if something not matches in your setup
of a use of the module — but this is another story.

The prefix is used in the variable initialization, so if you don't have the environment in place you
can use the flag files instead. Then you do the things with files, and its a bit slower, but its the best I
could come up in case of a logging login shell that had to use the module. Setting environment
variables so that a login shell uses them is at best administrator stuff and could compromise the
whole system, so I leave this to you. Use in that case the flag files instead.

Definition : The flag files

Using the flag files is a replacement for the use of environment variables. It was needed to do this to
make it possible to use the module for a login shell. I think that's the only place you will need it.

This said — if you have problems with using the environment variables — you can switch at least to
this way.

To do so is simple, but a bit boring, too. Simply check for the naming you need for the environment
variable, create a file with that name and a .TXT suffix, and give it the right content. Everything is
done in numbers, so you have simply write the number in question into the file. A little example
would be

ATRSHMLOG_ID=123456

export ATRSHMLOG_ID

for the environment way, and

echo 123456 > ATRSHMLOG_ID.TXT
for the flag file.

The flag files are used when no environment variable is set — but only the ID makes the difference.
So you cannot mix them. Its either the env or the flag files else.

How to build it

From scratch of course....

The hopefully working way
OK. We begin as simple as possible.

After the download

I assume you got the module as an tar ball or a zip file, or you have made a GitHub download.

So the thing is located at the BASEDIR (see above if you missed something here ...).

We open our OS shell for the user that has access. It looks in my case like this.

E 4 atrshmlog : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

readme. txt

B doc:oosplash H shrmlog : bash B strshmlog @ bash B Cownloads : bash

Tllustration 1: The BASEDIR dfter unpacking the tar ball....

For starters, there are the directories bin, doc, java, mksh, perl, python, src, SWIG.
The unsupported contains stuff that I not officially support, but you can use it.
For the sake of a fast success ignore the rest

We check now the bin, it should be in the path of the user that's logged in, so the scripts there

should be in place and executable.

Well here is what I get from an Is bin

* atrshmlog : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

readme. txt

B doc:oosplash H shrmlog : bash B strshmilog @ bash B Dokumente : bash

Tllustration 2: The bin directory with the build scripts

Looks OK for me.
You should have only the regular scripts in place here.

OK. We can now switch to the place where the things have to be used. Its the src directory.

Looks like this

* src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

atrshmlog.c

B doc:oosplash > | shmlag : bash H src : bash B Dokumente : bash

Tllustration 3: The clean src directory

Well. That's better. Everything in place, only one unsupported helper in here....

Check for completeness

We check now for a complete distro with the atrshmlogcheckcomplete script.

src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

> | doc : oosplash > | shrlog : bash H src : bash B Dokumente : bash

Tllustration 4: Check for complete script start

The start is done as usual. Execute it.

It checks out, everything is in place.

* src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

B doc:oosplash > | shmlag : bash H src : bash B Dokumente : bash

Tllustration 5: Result for the check complete script.

So we can go on with this.

Check for the platform

OK. We can now check for the platform we use with atrshmlogchecksystem. I spare us the
execution, only the outcome here.

src: bash — Konsole

ini.h

> | doc : oosplash > | shrleg : bash > | src : bash B Dokumente : bash

Illustration 6: Analyze the system with the check system script

That's a Linux, a x86_64, flavor is fedora, and we have a gcc and a cc in place, both can be used as
supported platform with the define ATRSHMLOG_PLATFOM_LINUX_X86_64_GCC setto 1 in
the header.

Now we can load the environment variables for the platform. We switch back to BASEDIR. Then
we source the already there dot.platform.sh.linux file. Then we switch back. Be sure to make the cd
because the script has to be used in its directory.

src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

em

t.platform.sh.linux

> | doc : oosplash > | shrlog : bash H src : bash B Dokumente : bash

Illustration 7: Setting the right environment

So we have now the environment variables in place.

First time: build

Now we make the module with the one and only call to makeall.sh.

After entering makeall.sh and then return

src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

> | doc : oosplash > | shrlog : bash H src : bash B Dokumente : bash

Illustration 8: After the makeall.sh finished

That was not so bad. Everything in place now, the documentation created by doxygen right in place
and last but not least the module compiled, the programs there and the library too.

Well, we check it.

src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

3t.original

.original

B doc:oosplash > | shmlag : bash H src : bash B Dokumente : bash

Tllustration 9: Checking the build result with a Is

Looks fine for me, so change to the BASEDIR, then to doc, and check for the HTML folder. If the
files are brand new and your browser is happy with the index.html that's it for the build.

See the testing for how to use them in detail. For a quick run we do it here just to have the first
expression how to do things.

First test : create the buffer

We create a shared memory buffer with the ipc key 4711 — that's a very well known number for a
city nearby, so I think only some guru guys would try to use it in the system before. If you are
having the right to do the shared memory thing, then it should work. So we start up the
atrshmlogcreate and use the 4711 as key. The second parameter is for the number of buffers, we use
an 8 here, which is for normal tests more than sufficient.

src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

atrshmlog

environment startshell

you can use the files ins

> | doc : oosplash H shmlog : bash > | src : bash B Dokumente : bash

Hlustration 10: A first test. We create a buffer for 8 log buffers with key 4711.

Looks good. The thing seems to make its job, there is an output that claims the ID should be in my
case

10453024

and that I should set some environment variable that way. Well, cut and paste is easy for Linux, so I
set it.

Side note: The last version of atrshmlogcreate also produces a file with the setting, its named
dot.atrshmlog and you can use it right away as a dot file in your shell. For mingw its called

atrshmlog.cmd. And if you insist you can give the atrshmlogcreate a third parameter now with the
name.

First test : init the area

So now we have the raw buffer, its time to initialize it. We call atrshmloginit for this. The parameter

is the number of buffers, in our case 8. And here it goes.

src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe
atrshmlog.o

~onment startshell

you can use the files instead.

> | doc : oosplash > | shrlog : bash > | src : bash B Dokumente : bash

fllustration 11: Initialize the area

Setting the environment variable according to the output of the create and then initializing the
buffer. In the last version the buffer count is alredy set in the environment and so we even don't
need that here any more.

First test: run the simplest test program

Nice. We have now the area. We could now try a verity, or a defect, or any other thing that uses it.
So we begin for starters with the simplest program that can use the log, the hello world example. Its
the atrshmlogtest00 . No parameters needed, simply start it.

src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

te this into t g environment startshell
into the pro

you can use the files instead.

H doc : oosplash H shrmlog : bash > | src : bash B Dokumente : bash

Ilustration 12: Testing the log with the hello world demo program.

Looks good.

Now we have to check if we really have log.

First test: getting the log into files

The thing can be done by using verify, which will give us at least one used buffer, or we can use
dump, and then check the hex codes (ups, I think I pass that) or we can use the reader to fetch the
log and write it down.

For the simplicity of the first steps we use the reader. Its after all the usual way to get the log. And a
verify is nice — only one line to type, but — but shown not the content.

OK. So the reader it is.
In this version the reader will be the atrshmlogreaderd .

And we have one complication. The thing will start, connect to the area, then check for data to
transfer, do the transfer, and then sleep as long as we don't stop it and wait for more data.

So we can do two things here. Start it, wait for a small time, lets say 5 seconds, then kill it with the
usual ctrl-c thing. Second thing is to start and then signal the reader its done. In this case the readerd
will transfer the buffer and end after some seconds by itself. This can even be set in advance of the
start of the reader, so it simply make the transfer for the buffers in place and ends immediate after
that.

We use the later thing, because we can do it without that ctrl-c thing, and then see for the output. To
do this we have to set the signal in place with atrshmlogstopreader. No parameters needed.

Then we can start the reader. It needs a target directory, so I give it a d1 as target. The rest is done
by the reader.

This looks like this for me

+ src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

this into environment startshell
into the profi

you can use the files instead.

> | doc : oosplash > | shrlog : bash H src : bash B Dokumente : bash

Tllustration 13: Setting the area to no more logging and reading the data.

Looking good again.

The reader took some time to write down the buffer. Its also the average time, because there was
only one buffer. We use those numbers later in the adjustment. The reader also told us that it uses
multiple threads for doing its stuff. See the reader chapter later about this and the adjustment
chapter, too.

For now we only have to check if the log is really in the file system. We can do this with an Is. To
be not to fast : its in the first directory that the reader uses. That's directory d1/0 in this case. The
reader simply starts to create directories in the root, that's d1 and uses numbers for the name — if
your OS cannot do this change the reader to use something like sO or similar.

src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe
or into the profile or ENV file

you can use the files ins

> | doc : oosplash > | shrleg : bash > | src : bash B Dokumente : bash

Illustration 14: The content of the directory tree d1 dfter transfer.

OK. There it is. The numbers depend on the process id and tid, so they change normally.

Now we have to use the converter. To do that is simple. Start it — its not connected to an area, so you
can use it at any time, only two parameters and that's it.

The other way is to use the helper atrshmlogconv. Calls the converter for every transferred bin file
in the tree.

First time : converting binary to human readable

That's the way we do it normally. So here it is

* src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

you can use the files 1

15 t22115 fo.bin' to file 'dl ~shmlog_p22115 t22115 f

22115 tid : etime readertime 1850 payloadsize

H doc : oosplash H shrmleg : bash > | src : bash B Dokumente : bash

Illustration 15: Convert binary to human readable text.

Converting all bin files in the tree with the helper atrshmlogconv , and some new statistics.

Looks good. We have some interesting info's in the second line, but for now let them be there. Its
part of the adjustment process to use these numbers.

We have now a converted bin file into a readable text. So here is the content. We use the simple cat.

* src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

B doc:oosplash > | shmlag : bash H src : bash B Dokumente : bash

Tllustration 16: The resulting log in text form.

That's a lot of numbers for now, and the text at the end.

Seems to me it worked.

When it does not work for you
OK. Bad things can happen.

Is it the wrong platform ?

First check if you are really on a supported platform.

Check the header atrshmlog.h for it:

atrshmlog.h - emacs@hydra.alphaset.de

Fle Edit Options Buffers Tools C Help

O & i o S 9 Undo o = Q

Jfand if you are depending on compiler stuff.

J’.’:i::+: I

* A\brief We have a xB6 64 bit, a linux and a gnu c
E
* Testet.
:1:},‘

#define ATRSHMLOG PLATFORM LINUX X86 &4 GNU 1

Jr.v’:i::q-:
* \brief We have a x86 32 bit, a linux
E
* Untestet.
:Q:f‘
#define ATRSHMLOG PLATFORM LINUX XB& 32 GNU @

;f:i::t
* ‘\brief We have a iaGd with 1linux,
E
* Untestet.
:i:,.‘
#define ATRSHMLOG _PLATFORM_LINUX IAE4 64 GNU @

f‘:i::{-:
* \brief We have a arm 32.
E
* Untestet.
:1:;‘
#define ATRSHMLOG PLATFORM_ARM 32 GNU O

J’.’:i::+:
* Zbrief We have a arm 64
E

-:--- atrshmlog.h 3% LE3 (C/1 Abbrew)

Tlustration 17: Supported platforms in the atrshmlog.h header (previous version ...)

There is a small helper to do the check, for now we do it manual. Or use the atrshmlogchecksystem.

So you will find as supported platform a define. And the define has a value 1 or 0. There can be
only one of them on 1, so check which one it is.

For the vanilla module it is the
ATRSHMLOG_PLATFORM_LINUX_ X86_64 GCC

So if you have another platform you have to check for it and then change the 1 to 0 and for that
platform the 0 to 1.

Then try again the makeall.sh.

If you don't know your platform its a bit harder. First there is the question if you are on an OS that is
supported. For this version the supported OS are:

* Linux
* Cygwin
* Mingw (via cygwin)

If you are on a Linux but does not know it, you can find out with the uname program. Its installed
on nearly every Linux and also on nearly every other UNIX and UNIX like OS.

> src: bash — Konsole

GNU/L1nux

[>] src @ bash > | doc : oosplash [>] Dokumente : bash

Illustration 18: Detecting the OS and the architecture with uname

OK. This gives you at least a clue about the OS.

When you get also the -a parameter to work you normally also get the architecture of the system.

Here is an output for another system:

Datei Maschine Anzeige Eingsbe Gerdte Hife

Il Offizielle Seite | Dell Deuts... ‘ € Cyawin

¢ home of the Cygwin project

.dsn't it?
Cygwin is not:

IGNU and Open Source tools * away to run native Linux apps on Windows. You

onality similar to a Linux must rebuild your application from source if you

0TS want it to run on Windows.

gwinl.dll) which provides substantial * away to magically make native Windows apps

ity. aware of UNIX® functionality like signals, ptys,
etc. Again, you need to build your apps from
source if you want to take advantage of Cygwin
functionality

The Cygwin DLL currently works with all recent, commercially released x86 32 bit and 64 bit versions of
Windows, starting with Windows Vista.

NOTE: The previous Cygwin version 2.5.2 was the last version supporting Windows XP and Server 2003.

For more mformation see the FAQ.

Current Cygwin DLL version

The most recent version of the Cygwin DLL 1s 2.6.0. Install 1t by running setup-x86.exe (32-but nstallation)
or setup-x86 64 exe (64-bit installation).

Use the setup program to perform a fresh install or to update an existing installation.

Note that individual packages in the distribution are updated separately from the DLL so the Cygwin DLL
version is not useful as a general Cygwin distribution release number.

Support for Cygwin

Hllustration 19: Platform check for another system.

And here is a cygwin for starters.

Check the C compiler

Next comes the question of the installed compiler and tool chain.
You will need at least an ISO C 11 conform compiler with support for atomics.

For the compiler you have to check the documentation. For my platform I have to give it a
-std=gnul1 flag to do the job.

A quick check is to compile a program that includes stdatomics.h . So we simply try a five liner:
#include <stdio.h>

#include <stdatomic.h>

int main ()

{

printf(,,hello world\n®);

}

or simply use the atrshmlogcheckc.c file.

And that's it:

* src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

GNU/L1nux

[>] src : bash] doc : oosplash] Dokumente : bash

Tllustration 20: Check for a conform compiler and the atomic header.

OK, the header is there and the compiler seems at least not complain about it.

So next is a test for thread local, which is new in C 11.

src : bash — Konsole

GNU/L1nux

[] src @ bash >] doc : oosplash a Dokumente : bash

Illustration 21: Check for a C 11 feature, the _Thread_local

If you have any trouble at this point, you have to check the compiler and the libraries. This is
depending on your platform and so I can give you only a hint. Call the compiler with a flag -help or
—help and see for its output, then check the man page or if it does not have man pages any doc in the
/usr/share directories for documentation to the thing. Having this said — I assume you are running a
UNIX box and it has at least standard layout for the files.

What if my compiler is indeed C 11 but no support for stdatomic ? That's for example the case for
CentOS 7.2 actually (gcc 4.8 does the C11 thing, but no stdatomic.h there).

One thing possible: Install a newer version of the compiler (here its was done for gcc 5.4.0 and the
source code, the thing is not available as rpm for now).

What if this does not work ?

Here is at least on project that tries to deliver for C11 compilers the atomics that don't have them on
the net. Try to find this : http://stdatomic.gforge.inria.fr

If any thing fails its at least a try to get the gcc up and running. It supports the atomic till C11 was
integrated from 4.9.1 on, so chances are good you get it with this. Then you have to check if the
library is linkage compatible with your target and if that's the case you are back in business.

If you have made it for the C module and the library and the programs you can use it.

Check the C++ compiler

The C++ programs are another story.

Its possible for the platform I use to use the C header with atomics and with inline mode. And the
C++ compiler does it too. So we have a coupling here of the two things.

If your C compiler supports the inline that does not necessarily mean your C++ compiler agrees.
Then you have to switch the inline off for the C++ part. And that means you need link able
functions in the module too.

This is not supported for now, so you have to switch inline off for both.

If you don't want to do this there is a unsupported hack, its that you compile the module inline, and
make a new file of the only inlined stuff, compile that without inline and link it with the C++
together. Its not tested but it should do the job — don't forget to use the right headers after this hack,
you will need one with and one without inline in most cases.

Check the OS if the things fail to run

Having it compiled can still mean you get trouble for the execution.

e src: bash — Konsole v~ D

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

[Grenzwert]

[] src @ bash >] doc : oosplash a man : man

Illustration 22: Limits for the user

We see here that there are some settings on my box that could affect the shared memory use.
I have used here ulimit, its a shell build.

If you encounter problems that would be the first thing to check for.

Second is that the OS allows only special users to build a shared memory buffer.

So you have to know the system for the settings then.

When it does not fit for your needs

So far you have made it, and it made the tests too.
But you recognize you need something different.

So what can you do about it ?

Changes with the build in initialization stuff

The first way is to simply check the possible changes for values the module uses in the already
made initialization process. You have to check for the attach function. It contains a list for
changeable values.

Here is short overview:
* atrshmlog_buffer_strategy
You can set the wait strategy in a buffer full situation for the process.
* atrshmlog_strategy_wait_wait_time
You can set the wait time in the wait strategy.
* atrshmlog_delimiter
You can set a new delimiter char in the argv concat of write2.
* atrshmlog_buffer_infosize
You can set the buffer size for dynamic allocated log buffers.
* atrshmlog_prealloc_buffer_count
You can set the number of buffers to allocate in one low level alloc.
» atrshmlog_f_list_buffer_slave_wait
You can set the wait time a slave sleeps if no buffers to work available.
* atrshmlog_f_list_buffer_slave_count
You can set the numbers of slaves to start with.
* atrshmlog_wait_for_slaves
You can set the wait flag for the cleanup for wait for slave to finish first.
» atrshmlog_clock_id
You can set the clock id for get_clocktime

* atrshmlog_thread_fence_1 to 13

You can set the thread fence flag for the fences.
* atrshmlog_event_locks_max

You can set the maximum index for events.
* atrshmlog_logging

You can set the logging process flag .

There is also a set of values that can be changed by the user with a function.

So this is the first thing. What if it is simply not enough ?

Changes in the code

Well, as with all open source code — you have it after all on your box right in front of your nose.
So you can make changes.

Its easy. You only have to check for the thing you need to be changes and then make it. Then a
makeall.sh and the distribution to the places you need this new thing.

There is one thing you should do at least when you try to change the code — change the version too.

#define ATRSHMLOGVERSION (XXX)

in atrshmlog_internal.h.

This is not for making a new module on the internet, its for your local module. You have then a way
to circumvent use of mixed modules. If there is any old module in place it will complain about the
version. So this is a safety for you. Choose a number of 100 and above, I doubt it will make it with
its normal development.

After making a change to the code you can check for the success by using the test programs.
Does it have a positive impact and its OK this way then simply use it.

If you have instead the need that your change has to be in the next version too you have some
options.

Making it big, making it small.

Making it big means you have a change for the module that is for the benefit for other users too.
Then you should pack your version, and sent the maintainer (which is me for now) a post card with
it in the attachment so he can check for it. If it is a good thing it will be in the next version.

Making it small - if you have only partly this in mind or simply need it only for you you can make it
with a patch. Most systems support creating patches with a diff and a patch program. So you create
a patch and make it work with the next version by using the patch. No more editing in this case.

This was one reason for splitting up the former one file atrshmlog.c into the impls. Its much easier
to handle patches this way.

Still, the version should then be changed. Don't forget this in your patches.

Adding stuff

OK, you made a new thing now and think its worth the money but you are not selfish so you want
to make it into the module.

There are simple questions you should first answer yourself.
* s it making anything else not to work ?
* Is it making no overhead for others ?
* Is it needing permanent maintenance ?
* Isit of interest of a special group of users ?

Well, that stuff.
If your answers are good, then pack your version and sent me a postcard with it.

For an example we choose the java jni layer. You found a way to log binary an object and that's nice
in the converter you patched too.

So your patch consists of a thing that would be very nice to have for all java users of the module.
Does it break other uses ? HM, I guess it will not, so you can answer that with a no.

Will it have overhead for others ? HM, depends. If the new converter has to check for every little
entry it could be some seconds in the conversion, but I doubt that would a problem. If it has to fire
up a jvm for every single conversion — well, that's different. This would likely end up in a big
howling group of C and other users why to have such a thing in there.... OK, for the sake of the
discussion its a no, no overhead.

Will it need permanent maintenance ? Well, that's a GOOD question, because you are not the
maintainer. So for now if you have that thing in a way the maintainer has to do hours of overtime its
bad. For the sake of the discussion it has not.

OK. Is it only of use for a special group ? That's a clear yes. No others than the java developers
need such a thing. Or at least need THIS thing. If others need from time to time a similar thing it
could be a good start to a plugin feature for the converter — so we simply cannot make it here a no
or yes — only if its definitely only for a special group it would be a no.

So now, would it be a disqualification ?

No, because if it is of interest it would be a thing to integrate for the layer in question, and so we
would have a new converter for the java folks here in the module.

You see, its not always that clear, but I think in most cases an addition will make it to the layer, or
the module. But it depends and so you should give it at least a try.

Now that | have it - how do | use it ?

To use the module should be easy in case you have a C or C++ language environment. At least for
the platforms I have encountered its no big problem to link a library or include an object that was
made from the system C compiler.

Things can change if you need different compilers, or you are located on the fenster;plural system
where you easy end up in the so called dll hell.

But for now we focus on the use in an environment where you have regular support from the
compiler and can use the module as is.

The way to implement a simple logging program

This is for the starters, so skip it if you have already done development. We will target a simple C
program here.

The module can be used in any C environment by using the headers and the compiled module, the
library, or the source itself as include.

So for the simple task to integrate it in a program we start with the well known minimalism C
program, known as hello world.

The hello world is doing a lot of stuff, but we will see for that later. For now we start with a simple
thing like this:

hello_world.c - emacs@hydra.alphaset.de

Fle Edit Options Buffers Tools C Help

O M g © Bsse Sude X m Q

#include =stdio.h= // 1
int main{int argc, char*argv[]) // 2
{ printf({"hello, world.\n"); // 3
return @; // 4
} // 5
l:--- hello world.c ALL LS (C/1 Abbrev)

Wrote /home/shmlog/docubuild/golden 1 0 O/src/hello world.c

Illustration 23: A hello world program C source code

Yes, I know its not right, some things are old school and and and ... but it will do the job here.
Compile as C11 and execute it.

Then see for the lines again.

Include stdio.h

That's the first thing. So we use the whole standard library of the compiler chain here. Most likely
you have a glibc in place, or a similar thing. For the UNIX's its different. But you have definitely
not some byte's object here, but a lot of stuff in place you don't know normally.

Make a simple nm of the binary and check what it needs.

> e src: bash — Konsole v

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe
U _ tls 3C_2.3

[>] root : bash > | doc : oosplash [>] Dokurnente : bash [] src : bash

Tllustration 24: A hello worlds internal stuff.

Starting point and parameters
The program will first have to initialize the library, its dynamic memory handling, the environment

variables and parameter areas and such stuff. Then the main is hit and your code is on the list. So
for now we have to realize there is a lot of initialization before the main starts.

Calling the library function printf

OK, this is easy. The object already reduced that to a simple puts. Still this means that the library is
called, and you can see the puts@@GLIBC 2.2.5 in place here.

Its not unusual to have the C library on board — at least on a UNIX system — but its possible
sometimes to do without it. For the platform I use its still clear that I will have the library on board
so I will use it in the module too.

Returning from main

This is a place were we normally say, well, that's it.

In fact its far from it. There is a lot of deinitialize stuff to do, and we can see this in the nm listing is
rough a third of the entry's handling de stuff. So be prepared that a program just not ends. It gives

control to the library and then finishes, eventually even a special end stub like the start stup is
called, so be prepared for things that can happen after you call things like return or exit.

The final end (or not ?)

After doing all this deinit stuff there is still the cleanup for the process you created. Resources of the
system are claimed back from the OS and the OS has to do at least for the file handles and the
memory a lot of stuff.

So you see, a hello world is far from the thing you normally are told. Its an opera in several acts.

Adding the module

That's simple. We compiled the module already, so we can use the library. Or make the source
include approach. Last thing will be used in the big example below, so I switch to the library here.

First we have to check for the module what has to be done. And we find that we can live for the first
test drive with two things here.

First we need the interface of the module. That's the include atrshmlog.h.

OK, the folks of the hard core line will say its sufficient to declare those needed functions simply
yourself as extern, but for now I will use the header.

That's the clean solution here.

So we need the include of it in place.

hello_world.c - emacs@hydra.alphaset.de

Fle Edit Options Buffers Tools C Help

D D i @ Save (j) Undo 7o E q

#include <stdio.h= // 1
#include "atrshmlog.h" // 6
int main(int argc, char*argv[]) // 2
{ printf("hello, world.\n"); // 3
return G@; // 4
} /S5
U:--- hello world.c A1l L4 (C/1 Abbrev)

Wrote /home/shmlog/docubuild/golden_1 0 0/src/hello world.c
Illustration 25: The include added

Its no special thing to include it, so you can do it before or after the stdio.h, itself does not include
that thing. In this version there is only one include that is done by the atrshmlog.h itself, and that's
the stdint.h. So we add this here and have no change for the program else.

So far we have now the most functions available, we have to call the first vital one. Its the
atrshmlog_attach().

Attaching to an area
We have to connect to an area. No area, no logging. Period.

So this is done with the attach function.

It takes its knowledge from environment variables or flag files, so there are no parameters here. We
simply have to call it.

Why we ?

OK. This is perhaps worth the discussion .

Its theoretical possible to do the initialization together with the first use of the log.
That's called lazy evaluation in many programming community's.

I decided not to do this.

Lazy evaluation would shift the point of error for the log to a first use situation. And that's more
than bad if you think in terms of separation of responsibility's. The attach and the possible error
situation should be clear and so the log simply should do an explicit attach and initialization
operation.

This has the advantage that you have control over the things done. And you can be sure that the
code you write can make the decision what to do. And not some deep down buried mechanism
inside a who knows when called piece of code.

On the bad side this means that its possible to make some logging before the program executes the
attach. So the module must handle the infamous problem of use before initialization. That's a
problem that becomes vital in C++ program, where you can use initialization code for your statics.
In C its less a problem. So for now we ignore that.

We add the attach.

hello_world.c - emacs@hydra.alphaset.de

Fle Edit Options Buffers Tools C Help
D B g © Bsse Sude % m Q
#include <stdio.h= // 1
#include "atrshmlog.h" // 6
int main(int argc, char*argv[]) // 2
{ itn attach result = ATRSHMLOG ATTACH(); // 7}
printf("hello, world.\n"); // 3

return 0; // 4
} // 5

U:--- hello world.c ALl LY (C/1 Abbrev)
Wrote /home/shmlog/docubuild/golden_1 0 0/src/hello world.c

Illustration 26: Attaching to the area.

Now we can add the one logging call we need.

Adding the logging
So all we need now is the one log call we want to make here.

If we ignore the result of the attach it will end up in checking an event that's not set and an global
process logging flag that's 0. So no damage is done. Only some cycles of your CPU will be needed
to realize that the log cannot be made.

That's the theory. In practice you have to realize that there can be hidden costs if you play games
with things that are needed for the logging, especially when it comes to building log info.

So you should ask yourself if you can live with that too.

If not, then try to make use of the return value, or use the Macro ATRSHMLOG_EVENTCHECK()
here.

For our small example we have only a static text, so it is no problem to do it simple here.

hello_world.c - emacs@hydra.alphaset.de

Fle Edit Options Buffers Tools C Help

D B g © Bsse Sude X ®; Q
#include =stdio.h= // 1
#include "atrshmlog.h" // 6

int main(int argc, char*argv[]) // 2

{
int attach result = ATRSHMLOG_ATTACH(); // 7

printf("hello, world.\n"); // 3

ATRSHMLOG WRITE(1,
P,
1L
0,0,
"hello world",
sizeof("hello world") -1
1; // 8

return 0; // 4
} // 5

U:--- hello world.c A1l LB (C/1 Abbrev)

Illustration 27: Adding the logging (and correcting a nasty error too)

OK. Now after we have it we compile it, and link the thing like the programs of the module.

Compile and test
So its after all the object liked together.

1o src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

[>] root : bash B doc : oosplash [>] Dokurnente : bash [] src : bash

Illustration 28: The build and a first test.

Great. At least it seems it does not crash (core dump is possible for the account I use) and that's it.

To see the log we need to make the area, initialize it, use the thing, take the reader to get the output
and convert to text.

That was already part in How to build chapter, so see there. Here is the output when its done.

> e src: bash — Konsole v

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

40 shmbuffer © filenumber

[>] root : bash > | doc : oosplash [>] Dokurnente : bash [] src : bash

Illustration 29: The output dfter a test against an active area (and some upses)

OK, for an old man doing it by hand its OK.
So....

The deep stuff

.... how to the line 8.

See it again:

ATRSHMLOG WRITE(L,
1 P 1 .
1,

g b

"hello world",
sizeof("hello world") -1
1; // B

Illustration 30: The deep stuff

OK. There is now a lot to say here about how to make a log entry.

Please check after this the HTML or man or latex documentation. Try to become familiar with the
way such things are said in the online help. This makes it easy for you to see for the other stuff
whats perhaps really in there.

First of all we have here again a MACRO.

I didn't say this before, but using the MACRO of a function is the preferred way if you use the
module.

There is some kind of hidden test here in place, so its definitely better than the call of the function
atrshmlog_write1(). And as always when it comes to a C library its a kind of last defense line
against last minute changes in the module itself. You only use a macro and the guy in the backyard
can make adjustments you don't have to know.

In this case we have the eventcheck right before in place, so the function will not be called if that
check gives a no go for the event number 1.

Next there is the set of parameters, all seems simple for now. A number, a character, a number, two
zeros, a string constant — OK, that's a bit wired, a sizeof of the thinganda—1.

First things first.

Check now the HTML documentation for the Macro:

ATRSHMLOG: atrshmlog h File Reference - Mozilla Firefox

ATRSHMLOG: atrshmlog.... x | 4

€ file:/ifhome/shmlog/docubuild/golden_1_0_o/docshtml/atrshmlog_sh.html#a0747fcodfbof3e3do82dcs8d? C Suchen B8 ¥+ @ =

#define ATRSHMLOG_WRITE(_ ev,
_evf,
__usr,

_5

_%

_b,

sz

)
Value:
(ATRSHMLOG_EVENTCHECK({

_ev]) ? N
(atrshmlog_writel) ({—ev),(__evf),{_usr),{_s),{_e),(_b),(_sz)) \
: -99 Y

’ |
Write a log entry with payload.

We write to log buffer memory here. The writing of a log entry, all in all covered for now, With a binary payload, so you can log everything you want,

Parameters
_ev The event number, 0 .. event count - 1
_ evf The event flag . for now 'I' for interval and 'P' for point. A plain ¢ char for now.
_ usr The user supplied event number, a 32 bit int.

s The startime.

e The endtime.

b The payload buffer adress or NULL.

sz The payload buffer size or 0.

Returns
The return code of the atrshmlog_writel function or -89 in case we have no logging active either for the event or for the process.

Tllustration 31: The online documentation for ATRSHMLOG_WRITE

OK. The first number is the event. So we use that event in case we want to switch that thing on or
off. Per default the events are on when we are attached, and off when we didn't make the attach. The
attach can make some tricky things in the initialization, so see for it when you have time for this.
You can set events on, off and define the meaning upside down to minimize your work for the
things.

For now we know we can switch the logging off if we set the event 1 to off.

Next is the eventflag, that is a character and it is needed in the transfer chain at several points. For
now simply accept that we take a big P and mean that we have a point in time log entry. And its a C
string type info.

Next is the user event. Its an info we can use, so I used her a 1. If I had an info worth it and fitting
in an int32 value I could give it here. Othen this is the case when a loop is in place. So you get the
picture. Use YOUR favorite thing here. The event is strictly for the module used, and the eventflag
too, but for the userevent its your free thing to use.

Now comes the pair of 0 values, and we see that this should have been the starttime and endtime.

OK, here comes the big info for you. If you do a log and you do a point in time type, the endtime is
always set to the starttime. So the second 0 is simply there to make the compiler happy.

You can of course now start to write a bunch of different macros to cover this. But you will not gain
additional functionality, so for now I have at least accepted that I give it then a zero.

For the starttime its different. If you have one you can put it in, if not a zero here means the thing
will call internal the gettime function and use this. And because of the point in time thing its the
same value that ends up for the endtime.

OK. This is a little bit tricky, but it saves really time and space in many cases. For the not point in
time its the endtime that is fetched internal, so you need only the starttime there.

And for the layers its a big difference to need a gettime call or not. So this is a hidden mechanism,
but this is a thing I had to accept after the tests and so I broke here my rule of separation of
responsibility's — you can get the time not only with the gettime function, but also in a deep buried
way in the write functions too.

The next is an address of a buffer, and the last the size of the buffer.
Surprise.

The write uses not the natural way to transfer a C string — this would be easy to do, and it would
mean for many uses to do it right. But instead we use a buffer with start and length.

So we do a binary transfer here, and yes, we can do that for real binary data.

Its up to the convert to handle the things we log. The transfer is itself always binary, so we don't see
any changes for the payload of the log call till it ends in the file written by the reader.

This has a big impact: We have to know the start and size of the thing, so we call in doubt a strlen or
have a calculated result at hand for the size (that's the sizeof here).

Its then our program that crashes if we had the much to othen happen bad luck thing with C strings.
Not the module. You will see this in the debugger in case it happens.

On the bright side we can log what we want, from strings to structures to raw memory. As long as
we know what we do it will be transferred. If it is not too big, of course.

The bad side of this is that we have in doubt to change the converter. But this is another story. See
the chapter for the converter for this.

OK. Now that we have realized the way the write transfers its clear what it is all about the last
parameter — we let the compiler calculate the buffer length, and because this will involve the
terminating 0 byte we get rid of it by reducing the size by one.

And now back to the log output.

Here is the line we got from the converter. This time we name the fields one by one

0000021784
That's the first number, and it is the process id. Check for it when you run the program.

0000000000021784

That's the thread id. Its the same for such a simple program as hello world. For programs
that use multi threading its different. On my platform I have access to the Linux thread id, so
I use this here, on others it could be also a different thing like a pthread id or worse. But its
for now a 64 bit number in the system.

000
This is the buffer id that was given to the buffer in the program. We can see this way when
we switch buffers. And when we recycle them for different threads.

000000000000000000
This is the file number that was used by the reader to write the log down. This can be used
to see if we have a change in the use of buffers in the file system.

000055167672793470

This is the starttime. Its a clicktime, meaning we have here the clicks of the tick counter
register of the CPU — not a real time, but the best thing a CPU can give you to know when a
thing happens.

000055167672793470
The endtime. As already mentioned in this example a copy of the starttime. Next example
will use a different one.

000000000000000000
The delta for starttime and endtime. In this example its zero (Why ? Can you figure it
out ?).

1476369624677945051
The estimated real time for the starttime. The converter uses two mealtime measurements
and calculated an estimation for the time that corresponds to the click time. Its the number

of nanoseconds since the system starts to count. In case of my platform its the time since
01.01.1970 00:00:00: UTC. In nanos.

1476369624677945051
The endtime.

000000000000000000
The delta.

0000000001
The event of the log entry.

P

The eventflag of the log entry.

0000000001
The userevent.

* hello world
The payload.

The converter has some stuff inside to make multiple lines if you insist to have them in the payload.

So for our first try its OK.

Now we have done this we can start to do some interesting things.
We build in a gettime for the start, a endtime for the printf and then see what that costs.

And to make things interesting we use this time the arguments of the program.

Measuring a printf

OK. That's simple. We add a gettime for the time and then do an interval instead of a point in time

log.

hello_world.c - emacs@hydra.alphaset.de

Fle Edit Options Buffers Tools € Help

D B il © Bsae Sud % | Q
#include <stdio.h= // 1
#include =<string.h= // 13
#include "atrshmlog.h" // 6

int main{int argc, char*argv[]) // 2

{
int attach result = ATRSHMLOG ATTACH(); // 7

atrshmlog_time t starttime; // 9
ATRSHMLOG_GETTIME(1l, starttime); // 10
printf({"%s\n", argv[1]); // 3

ATRSHMLOG WRITE(1,
‘I, S0
1
starttime, // 12
@,
argv[l], // 14
strlien(argv[1]])
1, // 8B

return 0; // 4
} // 5

l:--- hello world.c ALL L28 (C/1 Abbrev)
Wrote /home/shmlog/docubuild/golden_1 @ O/src/hello_world.c

Illustration 32: Hello world with use of argv and timing the printf

That made it then to this

1o src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe
. . - -

[>] root : bash [>] doc : oosplash [>] Dokurnente : bash [>] src : bash

Illustration 33: The test for hello world with argv use and printf timing

Wow. 51000 clicks for the printf thing.

Now we can make tests with it — I leave that to you. Try at least to test the time needed for the
gettime and the write with a static string. The make some tests for the printf and the file operations
fopen, fwrite, fflush etc.

After this its time to switch to a big example.

The big example for the C community

OK. Now its time for something greater. We use an exiting program source code here and
implement the logging.

The thing was simple. Support the korn shell.

This said I made the first log version and checked for the korn shell code — I knew the guys at
former bell labs were today doing things in a relative open way, so the source code should be there.
And as a hint I had already seen a ksh — not the pdksh — on a system about three years ago....

I found a dead end after the other. Yes, there was the source and yes, that server was down. The
usual thing when a guy leaves the company and the company starts to forget....

Try to keep it up, but ...

... did made it again run, Try again and ...

... down again....

BAD.

So I switched to the distro at hand. Found a rpm. Found the source rpm.

Surprise.

The thing used an own build system. And it was not there. Only the source tree for the shell.
Switch to another distro. Check for ksh. Bingo. Found rpm. Found source rpm.

This time luckily with the build environment (Its the next generation make of those guys, called
nmake — which was a good idea of the guys, but a little software company at Redmond had the
same idea for a bastard that I nether liked at all so all hits for nmake were a real punch in the
air).

OK. Adapting to my distro.

OK. Building the stuff.

OK. Checking for the compiler I used (was c99 that time, not c11, but worked).

OK. Find the main and then see what you can do.

OK. Include done, module added as an include (was one file at that time).

OK. Thing started, connected to the area and made logging.

OK. Try to understand how the source worked, try to implement useful logging.

OK. Had it done after 5 days (5 ? wow, didn't thought it would be possible, but OK).

When I then came into contact for the technical guy — Mr. Sven Winnecke -

Surprise.

Its not the korn shell of David Korn, but the mksh of the MirOS BSD.
Umpf.

Check for the source. Got it.

Bring it to run on the distro.

OK. I could build.

OK. Check for main.

OK. Attach is done.

OK. Logging works as before.

OK. Try to implement useful logging.

OK. Had it done after 5 days (again ... only 5 ?).

The next months were a permanent refinement of the logging itself, and from time to time changes
in the source to make a better logging. Most things in the source had to do with the problem that
there was no clear info in the thing about the most wanted info in a log — the position in the system
— this time not the position of the writes, that was easy, but for the executed intermediate code the
line in the corresponding shell script. This was about 80 % of the work and has nothing to do with
the log itself, its the simple problem in case you don't have the thumb on it in the phase of design
and evolution to make a thing work that any user suspects to be there out of the box.

OK. After all that fighting with source code of other people — it worked.

I got the line number with an approximation in the case it was not there and carefully changed the
code so it was there where I needed it.

After two months I could focus on the log itself again.

Making it faster, making it better for multithreaded programs and all the stuff for mutex's, then
condition variables, support threads and at last — atomics. And the memory model thing

Back to the thing at hand.

Its the mksh version 52 b. Now replaced by c, and I have no intention to do it again. So 52 b will be
our big example.

main

You find the code in BASEDIR/mksh/mksh.logging.

First thing is of course main. You open up your favorite text editor and then in main.c it is.
You have the unchanged source in the tree BASEDIR/mksh/mksh.52b for reference.

Remember the hello world ?

Adding the header, adding the attach.

See line 819 and follows. I use some time variables here. Needless to say I did some changes for
the type, but it was always that simple use of variables here.

Just to find about some speed timings I made some otherwise not useful logging's. Simply ignore
them.

After the attach in line 831 we can skip to 990. The thing uses an initialization function here, so
making some timings here is a real thing to do.

Ever had discussions about program start up ? Well, that's now a thing you can check for...

I use here a simple approach for the events numbering. Every implementation file gets its own
hundreds number range. So I use here 1 to 99. And after playing some games I came up at end with
using the same event for the time measurement call and the log call. Oh, and I didn't had the hidden
timing in the write at that time, so I do every gettime for endtime, too.

In line 1007 is one of the vital branches. The main interpreter loop. In 1022 the other loop.

OK. This means some playing with if else and making new events to make possible to switch of
timing and logging I don't need.

Back to the initialization, go to line 181. main_init.

Timing is OK. Make a gettime. Then long time no need to do a thing — its after all internal stuff of
the shell, so I don't need times here. The interesting spot is at 370, where I have to give the shell the
knowledge of the variables I used in the attach — or better — the name and value it should use for it.

Making a shell logging is one thing. Having it running in login shell mode is another. You cannot
simply set system wide variables. So you need something different. In this case it were the flag
files.

So now you know why they her . Its for a logging shell and you cannot set environment variables
before it has started.

And yes, I could live with a “so what ?” her — but I wanted the values most vital after the start
inside as variables. So I had to set them in the shell's init . Here.

Next thing interesting was the file include stuff. Every shell starts in normal mode and reads in
include files.

A profile here, some alias file there, eventually. A history ...

So from line 524 on we have the include stuff and its timing.

Ever had discussions about the time you need for start up and config files ? Now we know that....
Things are a bit strange to me, but in line 670 we are back on the money for init file timings.

I line 800 we have done so far that init stuff.

There is one dirty thing here. The line number problem. Solution was a more or less heuristically
one : make a line number guess and keep it up to date when you have one. So I introduced in the —
single threaded — shell source a global variable, g _linehint. Every time I have one I set it. When I

don't have one, I use the g_linehint.

That's a bit dirty, but the result is to have a line number that is most accurate for the logging, only
one line off some time. I can live with that.

Include is the next interesting thing. You take a file and include it. Again is the timing of interest,
and the logging needs a good line number — of the processed file of course, not the file the include
is in, but the file you process now...

We start in 1056 and take our time. The some vital info's — which include.

Ever have tried to figure out how many files you process in a shell start up on a system — and what
files ? Now we know that.

Next thing is the command. Most wanted for timing. How long took ...
Turns out its the next thing, shell , we need for it.

Its too much to give back in a simple text, so I spare you most of it. The case is perhaps the only
thing you should investigate.

The rest is support stuff, perhaps someone needs logging here, but not for me...

At the end in line 2556 I did the one and only thing I needed at that time — include the module itself
as source. Today it is needed to do this with the library, so this is now wrong.

eval

Its more than interesting to see how the shell handles a diametrical conflict — execute scripts as fast
as you can on one side, execute dynamic stuff on the other side, and last doing interactive input
handling. So eval is a vital spot — you call it more othen than you think.

OK. include made in 26.
Ups, what's that ? Substitute ? Interesting. Give it a timing and log.

Next is evalstr, the thing is used at several places. Also a vital target for logging. BAD THING:
more code for error handling and logging in those cases than real code. Sometimes logging can be
elegant, but that low level thing is not.

The expand then brings lots of parsing stuff. So logging and timing again. OK. We are already over
50 %

Then only supporting stuff. No need for more logging.

exec

Most likely the most important thing — the executor. The shell uses a scan compile execute internal
code approach. So this is the thing that really does the things we want to do.

Right in line 75, we start our logging's.... Good new: we have — sometimes — line numbers and can

update our heuristic helper hack.
Bad news, only part of the time ...

Well, this sucks, but I can't change it. So some playing with variables here. Then back to business.
Line 205.

THE MAIN INTERPRETERS SWITCH.

Bingo.

From here on we can tell what a simple command takes — i.e. a program call.
And (command) sequences, and | ing, and the not so othen seen ; things
And also some less othen seen things, like the co process.

All in all this is the real jackpot, till we reach line 800. Simply get the info you have and write it
out.

Some helpers need attention too. Comexec is one of them. After some iterations we have a logging
for the external binary's. Wow.

Bad thing. Need another helper variable, the command name . But its local, so I guess it hurts not
too much. Again we get sometimes line numbers ...

define. Nice . How long takes it to make a variable ... or function... or undefine it
And again a nice one. Built in.

Ever had discussions about using internals or external programs ? Or functions ? Now we know
that.

Skip some support stuff. No need for a log. Hit 1934. The builtin execution.
There are two bastards, one is WAIT and one is SLEEP.
Here we are for the wait.

Last action in this file is iosetup. Ever had discussions about the speed of the io operations for the
shell ? Now we now that.

expr

This is also a vital thing — anything you try to do in the right side of
Starts with line 205, v_evaluate.

But I overdid it. So after some iterations its the only place now.

funcs

OK. Here are the next targets. We start with the smallest of all, the . Command.

Line 1800 and we are in. Sourcing of files in a already compiled script context — how othen did we
discuss if it were too expensive to make include files to source ... Now we now it.

Line 1910, the WAIT.

The rest is support stuff, no logging needed.

The rest

Well, we could use eventually. Some additional logging, but for my purpose its enough.

Build the thing, set up a working area, run and see for yourself.

Never again discussions about times for functions, scripts, programs ...
How nice that could have been.

Sad to say, but they never needed such a thing.

So this is now the one big example how to log (and its a boring one, only the usual stuff, and no
real new functionality) - but its there and if you are interested you can make it run — remove the
source include in main, link a library and you are in.

Needless to say that I had two times changed the use of the macros, so I had to work it again two
times, but after all it was relative stable.

The java language support

The java support was done after the development of the mksh logging. So in this phase the need for
multi thread logging entered the scene. Before that it was — well, a simple thing to log in a simple
big system, the mksh and former the ksh. From now on the thing changed dramatically.

There was a simple problem.

Logging was done with real time time stamps — get_clocktime on Linux — and worked in an
approach to direct transfer to shared memory buffer.

The tests with the thing made it clear that this could not work in a production environment like an
application server.

So it became a change for the timing model — the click time approach — and an even more drastic
change for the logging itself. It became a thread oriented logging with alternatively used buffers.

So the java support was done with that in mind.
When the time was right, a first approach to a jni base support layer was done.
After some iterations the layer is now in place, and you have near full support for the module.

You can use it even without the need for the C programs if you want — every function of the C
module is supported on the java layer's jni module.

In practice its better to do things not twice, so I abandon the plan to deliver also java support
programs in this version. That's up to the java community for now. But its possible to do at least the
needed stuff for making areas and destroying them, so your work flow for testing is save. And if
you made it to support programs I will happily integrate them here.

How it works

The module is a jni implementation. Under cover you use the C module. The module is capable of
doing its job simply by using the internal infrastructure as in a C environment. No need for changes
inside.

This means you get in theory the same speed as for the C module itself. The only thing that slows
down is the jni bridge itself.

So when it comes to timing its near 50 % of the raw C function. For logging its a bit slower, and
because of the needed copy thing the module switched after some testing to the so called critical
methods of the jni interface. No copy of string or arrays if it is not needed, only use as a read only
address of data. Still for portability a use of the UTF converter if you need it.

The rest is more or less simple. Use of the function and no object stuff. Simple raw data types, no
classes, no exceptions and no use of the java side. Barely some string creations.

If you are interested the atrshmlogjnipackage.c is a good start.

How to use it

The user needs the following parts:

* Class ATRSHMLOG . java

This is the low level jni layer class. And its the only class you will get for now for use.
Check the implementation and focus on the backbone methods first — attach, gettime, write.
The rest is simply there to make the module fully accessible and in case of need you can
make use of create, delete, read and all other things.

* Shared library or dll atrshmlogjni

This is the bridge code from atrshmlogjnipackage.c and the linked library from the C
module, libatrshmlog.a. You need also the compiler support lib's and in case of the mingw
port the additional dll ' s of the mingw system.

* The support programs

You need the matching C support programs for the basic stuff you don't want to reinvent.
Reader, converter, even create and delete. So if you need a pure (?) jni only solution you can
replace them with your own code java counterparts. But for now I deliver nothing so you
should start with the C programs.

The rest is to copy the things created in the build process into something javaish — a zip or war or
whatever thing — and then use it. The raw class will do fine for the start, but don't forget at least the
other class files.

So you first have to build it — again I am not delivering binary code, only source, so if you are
interested in binary you have to contact me and I will see what I can do. But for now you have to
start with ATRSHMLOG:.java and the jni bridge file atrshmlogjnipackage.c .

How to build it in the first place
We start with the C module.

After this is in place we have to check our next options.

We have in place implementations that should work out of the box for oracle jdk, openjdk and IBM
jdk.
The oracle jdk is available for Linux — this was the major development platform. Its an outdated jdk

1.8.0 66 , but for jni its nearly identical for version 1.5 up to now.

The oracle jdk was also used for the mingw cross compile port for a win 7 system. So if you need
this its best to start with the jdk 1.8.0 102. As for Linux it should work nearly same from java 1.5 on
to now.

The openjdk is more or less the backbone today for the oracle jdk, so no surprise that this works
too. It was first done for fedora and 1.8.0 111, but it should work for others identical.

The IBM jdk was made last and for Linux again first. Its a new 8.0 version. Should do it for
fenster;plural too, but didn't test that. Should work from version 5.0 on to now.

So you have four jdk at hand that made it so far.

You know what you want to do — take one of these, check for your needs and then start working.

The java directory
We start with the basics.

The java stuff is located parallel to src — so we start at BASEDIR/java.

* java : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

.sh.linux

readme.txt

> | pics : bash > | doc : oosplash > | java : bash

Illustration 34: The java ase directory

OK. We have a readme — check it — and a bin and a src. And then oracle , IBM and fedora.

For the bin its clear, there are some scripts.

The bin directory

That's my bin so far.

b 4 bin : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe
. form,sh. linux

shmlog@hydra binls |l

> | pics : bash a doc : oosplash H bin : bash

Tlustration 35: The java bin with its scripts

We have here one script that is interesting now. The rest becomes clear when it comes to a real build
cycle. So for now a short info about the scripts

* compile_jni_stub.sh
The main build script — its the same for the jni layer as the makeall.sh for the C module.

* compile_to_class_package_version.sh
The helper to compile the java class files to byte code. This is a helper for now, but in case
you need it you can start it regular itself.

* compile_to_class.sh
The first version to do it — now only for documentation purpose.

* copyjnilib.sh
The helper to copy the jni bridge 1ib in place for testing.

* create_header_package_version.sh

The helper to create the C header from the byte code file of the jni bridge class.

e create_header.sh
The first header creation script, now only for documentation purpose.

* create_jni_lib.sh
The helper to compile the bridge C code and link to the library to get — ahem — the library ?
I think here we have to distinguish the library (C module) and the jni bridge library for the
jni stuff. We call the later from now on the jni library.

* dot.java.sh
The environment settings for the other scripts. Its the same for the java build as the
dot.platform.sh for the C module.

* dot.java.sh.linux
OK, already done here.

* dot.java.sh.mingw
OK, already done here.

* getfrommain.sh
The script to transfer the headers and the library to all vendor specific jdk directory's. This
is the real thing here, see below.

e start_hello.sh
Helper to start the jni thing for the first tests, now only here for documentation purpose.

» start_package_hello.sh
Another early bird. Simply for documentation purpose.

» start_package_log.sh
The helper to start the Test class main methods. This is the real thing — see below.

* wrong_create_header_package_version.sh
A gag — how to do it wrong ... or : when a C programmer tries to do things logically with
java. ..

OK. There were two real things, but only one for now. The getfrommain.sh. It transfers the headers
and the library to the mystery vendor and jdk directory's. We see now for names like oracle and
IBM and fedora, its time for a peek here...

E 4 java : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe
[shmlog@hydra binls 1s

oracle ibm fedora

readmea.txt

readme. txt

j readme. txt
dra javals

> | pics : bash a doc : oosplash H java : bash

Illustration 36: The vendor's directories

So that's now the vendor things, and inside the jdk things.

You should now check for the best match and make a clone with the proper naming for vendor and
jdk.

OK. So we transfer with getfrommain.sh from the src what's there to the whole bunch.

Meaning: you should have the real headers in src in place. And the real library. Don't mix platforms
or versions — then you have to ignore that script.

If everything is right we can execute the script now. Its mandatory that you are in the java directory
for its execution. So we call it relative with bin/getfrommain.sh.

Copy headers and lib from the C module

And so we do it

E 4 java : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

> | pics : bash a doc : oosplash H java : bash

Tlustration 37: Transfer from BASEDIR/src to the vendor's directories

Not much noise. Well, we will see....

Now its time to check for a vendor and the jdk directory's. We use here the first implementation,
that's the oracle and the jdk1.8.8_66.

Change into your vendor and jdk directory

We change and then see for it

jdk1.8.0_66: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

[shmlog@hydra jc

> | pics : bash H doc : oosplash > | jdk1.8.0_66 : bash

Ilustration 38: Inside a vendor dierctory...

Not a real surprise. A bin — with scripts — a doc — with documentation — and a src.

Let's see for it.

The content of the three

jdk1.8.0_66 bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

readme. txt

libatrshmleg.a

> | pics : bash > | doc : oosplash > | jdk1.8.0_66 : bash

Tlustration 39: .. and more inside of it.

OK. The bin seems to be a copy of the scripts — but in fact its an adapted copy — see later on.

The doc contains a nice little documentation of the basics in jni — if you are interested and have to
do it by yourself you can check it. Its somewhat outdated for the examples, but it helps.

The src is the real thing. We have again the — adapted - scripts here, so we are free to change them if
we need. For reference there are the scripts in bin, so don't change them in bin till you have done
the whole thing. Start only in src with changing.

We switch to src and now comes the list of the files in there.

e compile_jni_stub.sh
As already said. The main build script.

* compile_to_class_package_version.sh
The helper for byte code generation.

* compile_to_class.sh
Ignore it.

* copyjnilib.sh
The helper to copy the jni library.

* create_header_package_version.sh

The helper to create the C header.

e create_header.sh
Ignore it.

* create_jni_lib.sh
The helper to compile the bridge and link.

* dot.java.sh
The setting of the environment variables. Next thing to do.

* hellojni.h
The header for the simple example code.

* HelloJNI.java
The class for the simple test code.

* hellojnitest01.c
Test code for the simple test code.

* hellojnitestpackage01.c
Test code with a package.

* libatrshmlog.a

The copy of the library from the C module (check time stamp and size and whatever you
need too ... should be from BASEDIR/src)

e start_hello.sh
Helper to start the simple test.

» start_package_hello.sh
Helper to start the simple package test.

» start_package_log.sh
Helper to start the Test class main in the package tree.

For the directory's : includes is clear — check for the files and for the time stamp and length of the
headers from BASEDIR/src.

For de its the start of the package path. If you are a java developer you know what follows.

Check its end ...

The package directory

src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

libatrshmlog. a

ng/atrshmlog

> | pics : bash > | doc : oosplash > | src : bash

Tlustration 40: Inside the package

Not very much.

* ATRSHMLOG.java
The jni bridge class.

* ATRSHMLOGTest.java

The test class — for now its the only test I have, so don't be surprised if more follows in the
future.

« Lib

The directory that contains the jni library for test.

OK. Now that we know that tree, check for the others.
When you are ready, you can read on.
Ready ? So fast — well, if you said so.

Every vendor has the jdk directory, and every jdk has the same structure. So our little helper
getfrommain.sh is not so complicated after all.

It simply copy in every src directory the lib and in every includes the two include files.

Helps to do it manually. If you need.

The real different thing in every jdk is for now the dot.java.sh. It contains the settings of
JAVA_HOME, the JAVA_OS and so changes from jdk to jdk. And from platform to platform.

If you check the jdk and its include directory, you will find the platform named directory for the
stuff that is not identical for platforms.

So try to think backwards : if you have a new vendor and jdk you clone a nearby existing one,
check for the JAVA_HOME, adapt that in the dot.java.sh, check for the directory in the jdk's include
directory, adapt that to the JAVA_OS and with a little luck you are done.

The only thing left is the name of the library, and that's in the create_jni_lib.sh for the existing
platforms.

So much for a complex build problem....

Its now time to do the thing.

Setting the environment

We simply source dot.java.sh

src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

libatrshmlog.a

> | pics : bash a doc : oosplash > | src : bash

Illustration 41: Setting up the build environment

No noise here. If you insist you can check the environment.

Next is to start the build.

Building with create_jni_lib.sh

We start the script

src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

libatrshml

ging/atrshmlog

trshmlogjnip e.o and -Llatrshmlog

> | pics : bash > | doc : oosplash > | src @ bash

Ilustration 42: Crete the jni library

And there we are.

Two compiles java classes, one new header creation. One compile and one link line. Finally the
copy to the test directory.

All what's left is the test.

Testing the jni bridge
We have first to create a shared memory buffer with atrshmlogcreate. I will use 4711 and 8 for it.
Then the init for the area. Next the test of the bridge. Then the reader and the convert.

At last we can check for the result log.

And because it was already done for the C test program we do it in short form now.

b 4 src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

eate 4711 8

nvironment startshell

can use the files ins

return attach 1s O return write

t name for http

[> | src : bash [> | doc : oosplash [>] src : bash

Illustration 43: Test of the jni bridge

HM. One glitch, but a typo is OK at least, the rest worked as expected.

Details

Now we can go in some detailed check for the jni class. For the use of it see the Test class. For the
use of additional features you need to check the documentation of the methods. But that's the usual
way to do it today after all. You can use the HTML for it, the class is in there or your favorite IDE

and javadoc.

If you are interested in the way it works — see the C source or read the chapter about the glory
details.

But for now some info from a non java programmer to the java code.

Open the ATRSHMLOG:.java with your favorite text editor.

After some brubbling comments you touch the first thing of interest in line 70.
We load the bridge library here.

If you ever need to do that different you can change it. But try not to touch the native code — then
you can use it still in place with the existing library. No need for a recompile.

Next stop is after the enum stuff. I did it because it feels right to have some enum's for this kind of
stuff. Error codes is natural, and for the statistics the enum's can be a help if you need them. For the
strategy its at least a start to understand them. So much for the enum's. And use them only after you
are sure you understand the cost. For example don't make error enum if you encounter the 0 return
code for most methods.

That takes us to line 1068. Seems to be some simple int numbers, but its worth the stop. We have
the option to log not only C stuff strings (which would be very poor in a java environment) but also
to use a byte array. So you can tell the module in the logging what you want to do with it — have it
to be a log of a byte array in C style, or in UCS2 style. And if it is a log for a Point in time —
meaning we are having only one valid time stamp for the start or even none — or an interval in time
— you guess it, its a start and an end time stamp (which can be a 0 for end, see below).

Ahem. Yes, and there is of course the logging of — Strings.

Here you really need to understand what it means. For the time thing its the same. You log a point —
only one time has a meaning and its the point in time — or you log an interval. Same thing.

The real problem is the kind of String you want to get in the result log.

Having a language with a 2 byte per character string model makes it natural to log that strings. And
so you can do that with the ucs2 constants. One for point, one for interval.

If you use C style you get an internal conversion in the jni bridge code from ucs2 to the thing that
jni delivers as UTF string representation. That means your C buddy's have no problems to read the
stuff — if they have an UTF conform environment.

That's nice to the C guys, but has a big burden — its slow and happens in the logging phase IN
YOUR PROGRAM .

So I recommend to use that only as a last resort if things begin to become complicated with guys
like project managers or architects or quality assurance or.. or .. or...

If it is really a problem : you can log strings into UTF. And its the jni that convert them. So that
should be trustworthy for any guy of the former list.

If you want to have speed, well, then the ucs2 it is.

You have a potential problem with the actual version of the converter, because it then tries to make
some silly simple conversion of it. But you get it one to one in the binary file.

You can try to develop a better converter, or write one in java — that's up to you.

For now — you need these four constants because they are hard coded into the module and into the
converter. So use them. End of message ...

Now we enter the methods code. I will focus on those of interest, for the others simply check the
doc in the class or in the module.

First stop is attach, line 1109.

You use it to connect to a valid area in shared memory. The thing can be created by a tool like
atrshmlogcreate and initialized by atrshmloginit, but you can also use the layers create and
initShmLog methods — didn't try the later thing for now, so sent me a post card when it works.

Without the connect — no logging.

I suggest you make at least one run without a connect — should be running at full speed and without
problems.

OK.
Where do we get the parameters for the attach from ?

Well, that's already said in the C module section — but I know you don't really read that — so I
suggest you read the chapter about the environment variables and the attach at least.

Next is the gettime. Its the heart of the timing things, so let's see for the thing.
We have a 64 bit click counter timing model — I know, you didn't read the C module part

So we use them here as values. And use a low level long for it. No class, no fancy Long — a simple
long. And that will be my last word here. No high level things. I don't need them. If you need them
— use another log, it will be slow enough for your needs, I hope.

There is a static method for gettime too. Its sgettime. If you test and you can find its faster in let's
say, more than 25 % then the object method please sent me a post card and I will do the static thing
at least for the write too.

Speak of the devil. Next is write in line 1201.
This is the reduced form, only core info, no payload at all. This can help if speed is all you need.

Next is the write with String. Please keep in mind that the simple thing has an deep inside buried
mechanism to make sense of point in time and interval — which I have only added to reduce jni calls
— and that it is capable of doing ucs2 and UTF. So you have to know what you want and use the
correct event flag. See for the constants above.

Line 1360 comes first to a surprise — why a second write with a String ?

To make a long story short: This is doing ucs2 only, and it is doing only part of the string — you can
give the number of chars that are used from the beginning. So you don't have to make complicated
String operations to build one that fits — if you have something big like a stack trace or a json
package you can put it in and simply set a limit — no need to build up a new one. If the limit is too
big the real length is used.

If you need it sent me a post card and I try a “from to” version.
That's of course only half the thing. You can again log point in time or interval with it.

Line 1447 is then the write for a byte array — so you can log everything you are capable to put in
such a thing. Its converted in the standard converter as a C string or an ucs2 string. So to make use
of it its best to make it for a separate converter of yours. The starting point is the chapter about
make a new converter.

Now that we have the core comes the stuff that you perhaps never need — or perhaps do need.
So I try t focus on the details worth here.
Statistics can be helpful. So I build in that thing.

You can get them into an int array. To do that you have to give the array into the get thing, and to do
that you need to know how big it is in creation of it — its max index plus one ...

So much for statistics. See the enum's and the atrshmlogstat script for the info you get. Most can be
helpful in the adjustment process.

We have a sleep internal in the module, and on most platforms its a nano sleep. So I decided to
make it available to you. But be prepared: on some platforms it might not work as expected. See the
internet for a discussion on that thing. I give you one hint: fenster;plural is again the bad guy in the
game here. End of transmission...

Then comes the environment variable stuff. Can be helpful if you write your own tools, but I doubt
you will need it. Perhaps the set prefix, if you like another name for the variables prefix part.

The version starts at line 1550.

To make it simple: There is a major version and it is the compatibility level of the tools with respect
to the area layout. Also the reader and in last consequence the converter is in here.

That means that I give a new version if the layout changes.

The minor version is then about new features. That can also mean a new platform — but the layout is
not changed here.

Last is the patch version, which is about the bad thing stuff and how we get rid of it. Bugs.

For the major version I plan to do an odd even thing. Odd is a stable, even is an experimental but
otherwise checked one.

With line 1585 we enter the event stuff. As you know from the former chapters ... ups, I forgot, you
don't read those. Right. Events are the way to say where your logging happens, and so you use them

as an info like a line number — but not the same thing, please. So you can say something like “oh
yeah, that was at event 2544 and now I understand why it did then event 7536....”. That stuff.

We have implemented an array of chars in C for them. So you have plenty of them (concrete a
number of 10000) in the beginning. If you need more you can make it bigger. Costs memory. And
because they are related to an location we can use them to switch logging on or off for that specific
event. So the char array holds at least an on and off flag.

After the event stuff we have the logging state of the thing. There are flags to suppress it on level of
the system (the so called “Ich habe fertig” flag in the area) and on the process. For a thread you can
shut down logging too. And for the final systems shutdown we have another one, so that you can
come up against the so called zombie revival problem.

Next is the information about things in and around the shared memory area. That means the version,
the buffer count and the flags. Also you can get the address of the area as a long and use it with a
bunch of methods.

With 1753 we enter the configuration of the module. We can get and set a bunch of things. There is
the buffer size first. Its fixed for the first buffers, but when dynamic allocation comes in we can
change it (to be precise : reduce. No growth possible).

We can set the number of slave threads before the attach, and we can change the id of the clock we
use in the getClocktime.

Then there is stuff to handle the slaves. You can shut them down if you think its a wise thing to do —
they will exit their main loops the next time they hit it. You can set the wait flag for the cleanup for
exiting the slaves, and you can set the time a slave waits when it has found out there is no work to
do.

Line 1884 we enter the buffer handling. There are buffers for the log for the threads — so much here
— and we have a bunch allocated static in advance. Everything else is up to the program - you can
set the number of buffers we allocate in one low level alloc, set the initialization of them (with
memset 0).

In between — perhaps I should change this - is some other stuff. The inittime things. We make at
attach a kind of time stamp triple, two clicktime and a real time. Every time we move a buffer to the
area it gets the actual triple too. So we can approximate the clock times in the logging info with real
time. Of course that depends on a bunch of heuristics, so don't trust it too far. For example on
fenster;plural there is no thing like a get real time with nanos thing. Best approximation is a
Filetime with nanos in 100 step width ... did I ever mention I don't like that OS ?

You can get the id of the highest used buffer — which gives you an approximation how much
memory is used for logging.

Then there is again stuff in line 1950. We can stop a threads logging. That's done by stop and it is
the thread that has to call it for.

We can also flush the buffers. That is a good thing to slow it down — meaning we have after the
flush no usable buffer till they have made the round trip to the area and then back. Consider be
warned. And perhaps I will even make it worse — build something like an auto flush to help that

guys from the debugging frontier division

Back to the buffers. An important thing is at 1973 . You can set the threads strategy. That means you
can have the thread decide what to do if the buffers are full. In that case we need at last the options
to discard or to spin lock. Waiting is also possible, and for highly unpredictable loads I have the
adaptive strategy's in place. See the glory details for that. And the adjustment chapter.

In 2012 we do the final thing for slaves — we create one if we need. OK, if we create we have also
to maintain the opposite case — we kill one and then we have to balance the count with decrement.

The fences stuff follows. There are 13 thread fences build into the thing. See the glory details for
the story behind them. You can switch them on if you need. That's for the case you encounter
inconsistency for the log. Can happen. Had it in development two times. And for different platforms
it can be worse. So they are off for the Intel boxes, but you can switch them on.

One method to get a real time, if it were not for the need to check this against your internal clock....
Now comes some odd stuff. We need to talk about a forced thread death here.

First in line 2258 a method that the thread has to execute. It delivers the address of the thread local
storage (to be precise : we use a struct and that is the start address).

With the next you get the thread id — the thing is the best I could get, so be happy if it matches your
thread system thread identification thing. If not you have to use the tid or the thread local address
and match it to the thing you get from your system.

Now to work: line 2275 makes a stop for a thread — and this time its with the threads thread local
address done — so you can use it to turn down operation for a thread from your application. This
works for a logging thread and a slave thread.

For the logging thread the buffers are dispatched to the area, and you never again make a log for it.
No way back. The buffers are recycled after that and no longer the thread can use them.

For the slave the next activation will hit the end switch and the slave exits after the cleanup. So this
is no kill, but a graceful and normally fast stop for the slave.

We skip the already mentioned init buffer stuff here.

Next is the iteration method for the slave list. Well, you need a way to identify the slave, and you
simply get no info from its start that's worth it. Perhaps I will change the interface in future, but
now there is none. So you use the iteration and start with a null and get the first slave's thread local.
Call it with it and you get the next. Till end of story, then you get a null.

So you can pick a thread and use this together with the next method to get its tid. The rest is a call to
turn off.

That's the simple and clean way. Now for the dirty way.

You need to kill the threads — why I don't know — so you have it here. Retrieve the thread local. Get
the tid. Identify your target. Remove it form the slave list (next method) and then kill the thread.

You will loose the buffers for recycle, and the thread local will no longer be valid. So you cannot
give the buffers free, but the cleanup at end will move them to the area at least. Of course you can

call before the kill the turn off, but then you don't know the state of the slave list and you cannot
remove it save. Consider be warned....

There is now the reuse thread buffers method, so you can after the kill is done recycle the buffers if
you have the tid of the thread — from the point of the module. Still you will loose the last statisics of
it.

That's dirty, and if you misunderstood something best dangerous, likely fatal for your program. So

be sure you know that you need that. I prefer the clean way. But you can do it...

At line 2359 we have the first administrative function of the module — verify. Its normally only part
of the higher level so its not for normal clients. If you want to make all for the java things you can
do this. Make your own verify.

Next is the clicktime via clock id . That's needed if you have different clock models or different OS
calls. For now its simply a layer of the low level click time functions.

The next is read and readFetch. To make a long story short: you can write your own reader. The
backbone functions are here. The interface is a bit odd at least. An array to put the stuff is OK, but
an array for the secondary info's is at least odd. But its simple, fast, and I think I need no difficult
oversize getter stuff then — don't forget that a reader has to be VERY performant.

For the read its the somewhat outdated call, use the readFetch instead.

Next is in line 2602 the create. So you can make your own buffers in a test driver or make your own
version of the create tool.

This has the same consequences as for the module on the mingw port — and I guess for all the ways
to handle the things on the fenster;plural system. Read the glory details for it or see the mingw port .

Next is the destroy of the buffer. OK, cleanup and init so we can mimicry the delete, init and finish
tools.

Last are two little helpers to be used to make a thing like the signal tools or the dump or the defect
tool. They use the raw C pointer thing and you should NOT use them in any other thing like a valid
area buffer.

OK, this was a fast trip through the thing.

Let me summarize it.

We can create, delete, init, deinit, inspect and switch flags for the area.

We can attach to it and then do things like read and write.

We can configure the parameters of the module, which are buffer related, and slave thread behavior.

We can inspect the environment — partly, only the variables here — and the initial times, real time
and clicktimes.

And we can switch on and off the fences if we need them.

That's a lot more than a simple “open, write, flush, close” thing. So don't be surprised that it takes
some time to master it. For the start check the Test class, its perhaps all you will ever need.

The python language support

After I had done the initial jni stuff it was clear for me to make it to other languages too.
So on my first list I had python, perl and for those others SWIG in case they use that.
For the python I had to start at ground zero.

I am a newbie in python, so I first had to take some basic stuff from the python documentation page
about the making a C module work in python thing.

OK, that's not too hard. Making spam for the 3.6 was helpful.

And then I made it in rough 2 hours to a first test drive. The thing attached, took some times and
wrote the technical log. WOW.

Next was to build all functions that are now the interface functions in my usage of terms here.
And again it worked out, I could even read and read_fetch things. NICE.
That was about 6 hours later.

Then I switched back and checked for the two things I had found in the spam that I wanted to
support, the embedded thing — well, this was easy, nothing to do for me here — and the C API
capsule thing.

This took again rough 10 hours and I had in the final state the core functions too.
So again some swift changes and several builds and I was there.
Next was to make a big review round, and after two hours I had it done so far.

Last thing was the thing you most likely already know — the thing about python sex.

Python's SEX

Well, all living things on earth seem to have that reproduction mechanism build in.

And this is also true for the mammal, reptile, bird, fish, even plants.

For the higher ordered it is always done by the mix of two individuals of different gender.

And so there is the male and female thing.

For the python's its different.

They have the gender 2 and 3.

Gender 2 is the python 2 way, and gender 3 is the python 3 way.

And they simply don't mix. Its not clear for me how the python's then reproduce, but that's the facts.

They simply don't mix and still the genders grow bigger and bigger

So I had to support not only the capsule C API, but also the two different genders 2 and 3.

OK, some macro stuff did the job, and so you can do it in the 2 way or the 3 way., and it was done
in about an hour of my time with tests.

How it works

The module is a direct used implementation. Under cover you use the C module. The module is
capable of doing its job simply by using the internal infrastructure as in a C environment. No need
for changes inside.

This means you get in theory the same speed as for the C module itself. The only thing that slows
down is the python parameter handling in the bridge code itself.

The rest is more or less simple. Use of the function and no object stuff. Simple raw data types, no
classes, no exceptions and no use of the python side with the exception of the exception
atrshmlog.error. Barely some string creations.

If you are interested the atrshmlogmodule.c is a good start.
The bridge always uses a so called core function.

The core function itself is used in the C API for the use in other modules. See the header
atrshmlogmodule.h for this stuff.

The core function is most of the time only used to convert the types from a call to a C module
function to the usual stuff in the python module.

The module gives also the error Object and a small number of constants to the user.
So you have this in module init.

A simple import gets it in. If you made a module for the 2 it must be used by a 2, if it was made for
3 it must be the 3 — any mix and you will encounter problems — best in build phase, worst in the try
to load it.

How to use it

The user needs the following parts:
* Shared library or dll atrshmlog

This is the bridge code from atrshmlogmodule.c and the linked library from the C module,
libatrshmlog.a. You need also the compiler support lib's and in case of the mingw port the
additional dll ' s of the mingw system.

* The support programs

You need the matching C support programs for the basic stuff you don't want to reinvent.
Reader, converter, even create and delete. So if you need a pure (?) python only solution you

can replace them with your own code python counterparts. But for now I deliver nothing so
you should start with the C programs.

So you first have to build it — again I am not delivering binary code, only source, so if you are
interested in binary you have to contact me and I will see what I can do. But for now you have to
start with he python bridge file atrshmlogmodule.c and atrshmlogmodule.h.

How to build it in the first place
We start with the C module.

After this is in place we have to check our next options.

We have in place an implementation that should work out of the box for Linux and python2 and
python3.

You have simply to know what you want to build. If you need both its possible to make the first and
then copy the thing out of the directory to a safe place, then reset the environment and build the
other. No need to build the C module again or tho clean up.

The python directory
We start with the basics.

The python stuff is located parallel to src — so we start at BASEDIR/python

b 4 python : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

[> | doc : cosplash [> | src : bash (>] root : bash [>] pythen : bash

Illustration 44: The python basedir
OK. We have a readme — check it — and a bin, a doc and a src.

For the bin its clear, there are some scripts.

The bin directory

That's my bin so far.

bin : bash — Konsole

Hilfe

Bookrmarks Einstellungen

[shmlog@hydra binls |

> | doc : oosplash > | srec ¢ bash B root : bash H bin : bash

Illustration 45: The python bin directory with the scripts

We have here one script that is interesting now. The rest becomes clear when it comes to a real build
cycle. So for now a short info about the scripts

* compile_python_stub.sh
The main build script — its the same for the python layer as the makeall.sh for the C module.

* create_python_lib.sh
The helper to compile the bridge C code and link to the library to get — ahem — the library ?
I think here we have to distinguish the library (C module) and the python bridge library for
the python stuff. We call the later from now on the python library.

* getfrommain.sh
The script to transfer the headers and the library to python directory's. This is the real thing
here, see below.

OK. There were one real thing, but its one for now. The getfrommain.sh. It transfers the headers and
the library to the mystery python directory's.

+ python : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

pythonls A

> | doc : oosplash > | src : bash B root : bash [>] pythen : bash

Tllustration 46: The python source directory

So that's now the python things, and its the src.
OK. So we transfer with getfrommain.sh from the src what's there to the whole bunch.

Meaning: you should have the real headers in src in place. And the real library. Don't mix platforms
or versions — then you have to ignore that script.

If everything is right we can execute the script now. Its mandatory that you are in the python
directory for its execution. So we call it relative with bin/getfrommain.sh.

Copy headers and lib from the C module

And so we do it

+ python : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

b ir
platform

bin/getfrommain.sh

> | doc : oosplash > | src : bash B root : bash [>] pythen : bash

Tllustration 47 Transfer of lib and headers before build

Not much noise. Well, we will see....

Now its time to check for the src directory's.

Change into your src directory

We change and then see for it

+ src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

frommain.sh

libatrshmlog.a

atrshmlogmodule.h

> | doc : oosplash > | srec ¢ bash B root : bash H src : bash

Tlustration 48: Inside the source directory ready for build

The src is the real thing. We have again the — adapted - scripts here, so we are free to change them if
we need. For reference there are the scripts in bin, so don't change them in bin till you have done
the whole thing. Start only in src with changing.

We switch to src and now comes the list of the files in there.

* compile_python_stub.sh
As already said. The main build script..

* create_python_lib.sh
The helper to compile the bridge and link.

* dot.python.sh
The setting of the environment variables. Next thing to do.

* atrshmlogmodule.c
The python bridge code.

* dot.python2.sh

The setting of the environment variables. Its the python2 this time for Linux.

* dot.python3.sh

The setting of the environment variables. Its the python3 this time for Linux. So you can
change the dot.python.sh and have it still here for reference.

* libatrshmlog.a

The copy of the library from the C module (check time stamp and size and whatever you
need too ... should be from BASEDIR/src)

* atrshmlogtest.py
Start the simple test.

e atrshmlogtest2.py
Helper to start the simple test with python2.

* atrshmlogtest3.py
Helper to start the simple test with python3 — so you can change the atrshmlogtest.py and
still have it here as a reference.

For the directory's : includes is clear — check for the files and for the time stamp and length of the
headers from BASEDIR/src.

OK. Now that we know that tree, check for the others.
When you are ready, you can read on.
Ready ? So fast — well, if you said so.

Its now time to do the thing.

Setting the environment

We simply source dot.python.sh

src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

frommain.sh

libatrshmlog.a

rnal.h atrshmlo
sh

> | doc : oosplash > | src : bash B root : bash [>] src : bash

Illustration 49: Setting the build environment

No noise here. If you insist you can check the environment.

Next is to start the build.

Building with create_python_lib.sh
We start the script

+ src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

frommain.sh

libatrshmlog.a

atrshmlogmodule.h

e.o and -latrshmlog

> | doc : oosplash > | srec ¢ bash B root : bash H src : bash

Illustration 50: Create the python library

And there we are.
One compile and one link line.

All what's left is the test.

Testing the python bridge
We have first to create a shared memory buffer with atrshmlogcreate. I will use 4711 and 8 for it.
Then the init for the area. Next the test of the bridge. Then the reader and the convert.

At last we can check for the result log.

And because it was already done for the C test program we do it in short form now.

b 4 src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

ou can use the files instead.

0.bin' to file 'dl

1150

[> | doc : cosplash [>] src : bash [>] root : bash > | src : bash

Illustration 51: Test of the python library

HM. One glitch, but a typo is OK at least, the rest worked as expected.

Details

Now we make it for the bridge in C.
Take your favorite text editor and open the atrshmlogmodule.c.
We start with the usual comments about what it is...

Then we enter the python version code thing. Its set via -D in the build script. And its value is given
from the dot file.

So here we have a first check group. Have we made a new version in python we will need a new
check here ...

Next we check our settings in the include directory we have given the thing to use.
Again a wrong or new version would be found here.

After the checks we set a define for the size_t thing and include the Python.h and our module and
the C module files.

Now we have a small helper, a struct thing for conversions. We use large numbers to transport
addresses of the shared memory area around.

Then we have the error object. I use it in case the supported parameters for a call are wrong. For the
module calls I return that returncode — no exceptions here. So if you get an exception its normally a
problem with the supported parameters. For internal error you have to see what's the returncode.

Most functions even do not have one, they are simple getter's. So don't overdue the checking....
Next a small helper for making a list.

OK. And now we start the real thing.

The core functions.

After I found the way to implement the C API capsule I made them. They simply call the C module
functions. And they make on low level C the conversion from the internal types to the things I use
in the bridge code.

So the rough hundred functions that follow are the real working code functions.
They are the members in the C API pointer buffer.

And they are used in the interface code as the function that does the thing. So you get the same
when you cal them in the interpreter — via the interface function — or direct via the C API header
trick.

Simple first one is attach.

For gettime I decided not to check events — its not worth that in a layer of multiple functions and

with check for parameters in the way python does it — so its always on.
The write0 and write. Didn't check for binary now, according to docu it could work...
Again simple stuff for sleep nanos, and so long till we hit get_inittime.

Here I have the version in C with giving back two values via pointers. So we do not use the struct as
in the C module here.

Again simple stuff till we hit get_realtime. Same goes here for the use of pointers as for
get_inittime. We do not use the struct.

Again simple stuff till we hit the two we normally don't need in a client, the read and read_fetch.

Both can be used, but only read_fetch is the actual one. The read will disappear in the next version.
For now we have both.

The core function simply makes again the type conversions into the types I use in the python part.
And again the inittime and he lasttime are split into two pointer assignment operations.

And again that boring simple core functions.

Last are the two that I don't need in the C world, the things to inspect and change the area by a
python user, the peek and poke things — same as for java I try to give you the minimal support and
that's it.

So rough 800 and about 20 percent of the thing is done.
Now the interface code follows.

I had first the actual call to the C module functions in here, but after the core functions were
introduced I had also to switch to them — its perhaps a bit slower that way. I will make some tests in
the next version and eventually then support gettime and write direct here, and you will not have the
same in the C API, but it will work still the same way in the C module.

Again the first is the attach. And its a simple one.
So we now have simple getter like calls to the core functions. No big deal.

The write is the first to use parameters. And no, I didn't try the keywords. Would be nice but also a
bit slower I guess. If anyone is interested I will add them too. Simply sent me a post card (with a
credit card attached) and you are in

Next interesting stop is get_statistics. I use here the helper and create the result list.

Next some string things. See for the python 2 and 3 way to make strings if you have a problem with
it.

Again simple boring getter like and setter like stuff till we hit get_time.

This time we need as result a tuple, so I do here the conversion from the given values to a touple.

If you find this interesting — I can't help you ...

Again simple setter and getter stuff. Then we hit get_realtime

Again the pointer values are turned into a tuple.

Now we have from time to time the area and the thread locals in — both addresses and so pointers in
C — and in the python interpreter I use a number — so I do the conversion in a bit unusual way by the
union here — no cast or assignment to another type. So its up to the layout of the platform what you
get as a number — no way for me to tell it — but its consistent that way.

OK. Now the big two again — read and read_fetch.

I have tried to take the buffer stuff out of reach if you don't use them — its a half MB after all — and
moved the thing to thread local if you really plan to do it in multithread program way.

For the most things I have simple checks — and again for the parameters an exception if it fails. The
rest is simple. I construct a tuple and you get what I have.

A tuple with one returncode — bad thing happened.
A tuple with a code and a length only — empty buffer found, rest OK.

For the real thing you get near 40 values back, and its the buffer as a byte array. So you are in with
the binary things here.

After everything goes well you can use the tuple in the way you want. And I do not give back the
buffer then — its assumed you have no read in a client, only in a dedicated reader — so you have to
accept it will reuse the buffer from now on.

Next is again the simple stuff of getter and setter like functions. Starts with verify.

So we reach the end of the interface functions round about 3950 with peek.

Now we have the methods array.

If there is more time I will start better comment strings for the methods. See next version.

About 300 lines later we are in a little helper to clean the init function. I use here a helper to make
the C API array — that's not a real need, could have made an initialization instead like in the C
Module for the static buffers. But this is the way of the documentation for python org, so I didn't
made it different.

After the hundred are in, we reach the python 3 stuff.
The module is described with the module struct here.
To make things a bit cleaner in the init function I use some defines.

A return code helper — the python 2 is void, python3 delivers a reference — and an name adjustment
for the one external function.

OK. This wasn't hard at all.
What's left is the init function itself.

I try some runtime checks here. Its normally too late for it — the different flavors are simply not link
compatible for the used string and bytes buffer stuff. But if you ever get hands on a next version
that is — here is the safety against wrong use.

Next comes the create for the 3 and initmodule for 2.

Well, could have made a helper to make them identical — but then I would have needed some tricks
with defaults and this seemed not right to me here. So we have to live with the #if here.

Setting up the error object is same.

Also the helper for the core functions in the API array.

So next is the capsule and we are in for the module.

Wait — forgot the constants...

Having such things in C or Java it felt right to me to make them in python too.

So we have here the helper for the writeQ and write. OK, perhaps I overdid it — but I used one and it
worked.

So much for the details.

Now check the test scripts and you should be able to start the new logging thing.

The perl language support

After I had done the initial jni stuff it was clear for me to make it to other languages too.
So on my first list I had python, perl and for those others SWIG in case they use that.
For the perl I had to start at with my python experience.

I know something after 20 years of use for perl, but no internals so far. Only from the panther book
the things how it should work with XS and with SWIG.

So I started with XS. It is after all the default for all modules for perl distros itself.

But I ran in some silly problems. Didn't get the right answers for my questions. Began to become a
little bit frustrated after the easy way that python had made it.

So I switched to SWIG.
OK, that's not too hard. For the first test drive it took 30 minutes and I was back in business.
See Atrshmlog.i for it.

Then the small adjustments for names and that stuff, the ignore of not needed or pollution of name
space things.

The remaining problems were the missing gettime — OK, that was easy, use an additional C source
for the thing and make it there.

The return for the get_inittime and get_realtime came next. First found a thing about making a
reference pointer work with some — sorry to say it — ugly helper functions like alloc, fetch, store and
delete.

But it looked like it could work.
Checked some other hits from google and - BINGO.
With the OUTPUT things got back on the right direction again.

Same problem, only bigger in code was the get_statistics. Again a helper wrapper with OUTPUT
solved it. So we are now in for 100 values — from which for now 85 are in use. The rest is 0.

Took then 3 hours to make it from the python core functions to the perl wrapper code for read and
read_fetch.

But I skipped one thing.

Had core dumps when I first integrated the things and loaded the module.
Always at end I encountered a core.

I installed the debug stuff and then made it with gdb to the point of wreck.
Found a free of an environ[i] on the stack.

Environ ? Free ?

Then something made click and I checked the attach code. And yes, I had some putenv stuff in.

Don't know why perl insists to free the environment strings, but it does it. And so I made a small
hack in the internal header. And a #if in putenv in the attach.

If you really NEED the putenv — which is for a login shell only — you now have to switch that
define to 1 in the build of attach. So you have now normally no putenv in attach.

And it worked.

In a later version I will bring the putenv back to work — don't know how to do it for now, but I will
try. For now ignore the thing if you are not using a login shell.

So after I had made the perl module I got also two test scripts, one for the usual small test and the
other for the read_fetch. Nice to have it, but I doubt it will be of help for the reader stuff, more for
debugging.

Perl XS

This was strange. I did some things — and they worked. Others didn't.

For example I could make the getter's for the int values. OK. But the getter's for 64 bit simply
didn't work right.

So I had also the core dump thing — which I could solve in the SWIG session.

All in all this means you have for now to install SWIG and then can build it.

If you have problems to do that contact me and I will give the XS a second try. Or help you with
the SWIG.

How it works

The SWIG uses its definition file to build a wrapper C code file and the perl module pm file for the
use directive. So you have in place the swig wrapper, the additional C code file with the helpers and
the C module itself.

The module is a direct used implementation. Under cover you use the C module. The module is
capable of doing its job simply by using the internal infrastructure as in a C environment. No need
for changes inside.

This means you get in theory the same speed as for the C module itself. The only thing that slows
down is the perl parameter handling in the bridge code itself.

The rest is more or less simple. Use of the function and no object stuff. Simple raw data types, no
classes, no exceptions and no use of the perl side. Barely some string creations.

If you are interested the atrshmlog_perlwrapper.c is a good start.
The module gives also the a small number of constants to the user.
Also the enum's are there, but here you have to use the C notation with the in C usual prefix.

A simple use gets it in.

How to use it

The user needs the following parts:
* Shared library or dll Atrshmlog

This is the bridge code from the SWIG code atrshmlog_wrap.c , the
atrshmlog_perlwrapper.c and the linked library from the C module, libatrshmlog.a. You need
also the compiler support lib's and in case of the mingw port the additional dll ' s of the
mingw system.

* The support programs

You need the matching C support programs for the basic stuff you don't want to reinvent.
Reader, converter, even create and delete. So if you need a pure (?) perl only solution you
can replace them with your own code perl counterparts. But for now I deliver nothing so you
should start with the C programs.

So you first have to build it — again I am not delivering binary code, only source, so if you are
interested in binary you have to contact me and I will see what I can do. But for now you have to
start with the perl bridge file atrshmlog_perlwrapper.c and Atrshmlog.i.

How to build it in the first place
We start with the C module.

After this is in place we have to check our next options.

We have in place an implementation that should work out of the box for Linux and perl 5. Didn't
test perl 6 yet, so no perl 6 for now from me — but for SWIG I think it should work too.

The perl directory
We start with the basics.

The perl stuff is located parallel to src — so we start at BASEDIR/perl

* perl: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

[>] perl : bash > | src : bash >] doc : cosplash

Illustration 52: The perl basedir

OK. We have a readme — check it — and a bin, a doc and a src.

For the bin its clear, there are some scripts.

The bin directory

That's my bin so far.

bin : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

[>] bin : bash > | src : bash >] doc : cosplash

Tllustration 53: The bin directory with the scripts

We have here one script that is interesting now. The rest becomes clear when it comes to a real build
cycle. So for now a short info about the scripts

* compile_perl_stub.sh
The main build script — its the same for the perl layer as the makeall.sh for the C module.

* create_perl_lib.sh
The helper to compile the bridge C code and link to the library to get — ahem — the library ?
I think here we have to distinguish the library (C module) and the perl bridge library for
the perl stuff. We call the later from now on the perl library.

* getfrommain.sh
The script to transfer the headers and the library to perl directory's. This is the real thing
here, see below.

* doswig.sh

This is the helper to do the swig generation for the SWIG wrapper and the perl pm file.

* dot.perl.sh

The environment setter.
* dot.perl.sh.linux

The Linux version — for now the same.

OK. There were one real thing, but its one for now. The getfrommain.sh. It transfers the headers and

the library to the mystery perl directory's.

* perl : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

[> | perl : bash > | src : bash > | doc : oosplash

Tllustration 54: The perl source directory

So that's now the perl things, and its the src.
OK. So we transfer with getfrommain.sh from the src what's there to the whole bunch.

Meaning: you should have the real headers in src in place. And the real library. Don't mix platforms
or versions — then you have to ignore that script.

If everything is right we can execute the script now. Its mandatory that you are in the perl directory
for its execution. So we call it relative with bin/getfrommain.sh.

Copy headers and lib from the C module

And so we do it

perl : bash — Konsole

Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

etfrommain.sh

[>] perl : bash > | src : bash >] doc : cosplash

Illustration 55: Transfer of library and headers

Not much noise. Well, we will see....

Now its time to check for the src directory's.

Change into your src directory

We change and then see for it

src : bash — Konsole

Dat Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

tfrommain.sh

libatrshmlog.a

[>] src : bash [| src : bash [>] doc : oosplash

Tllustration 56: Inside the source ready for build

The src is the real thing. We have again the — adapted - scripts here, so we are free to change them if
we need. For reference there are the scripts in bin, so don't change them in bin till you have done
the whole thing. Start only in src with changing.

We switch to src and now comes the list of the files in there.

* compile_perl_stub.sh
As already said. The main build script..

* create_perl_lib.sh
The helper to compile the bridge and link.

* dot.perl.sh
The setting of the environment variables. Next thing to do.

* doswig.sh
The helper to make the SWIG generator run.

* Atrshmlog.i

The SWIG definition file for this module.

* atrshmlog_perlwrapper.c
The perl bridge with helpers code.

* dot.perl.sh.linux
The setting of the environment variables for Linux.

* libatrshmlog.a

The copy of the library from the C module (check time stamp and size and whatever you
need too ... should be from BASEDIR/src)

» atrshmlogtest.pl
Start the simple test.

» atrshmlogread.pl
Helper to start the simple test with read_fetch.

For the directory's : includes is clear — check for the files and for the time stamp and length of the
headers from BASEDIR/src.

OK. Now that we know that tree, check for the others.
When you are ready, you can read on.
Ready ? So fast — well, if you said so.

Its now time to do the thing.

Setting the environment

We simply source dot.perl.sh

src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

tfrommain.sh

libatrshmlog.a

[>] src : bash > | src : bash >] doc : cosplash

Illustration 57: Setting the environment for build

No noise here. If you insist you can check the environment.

Next is to start the build.

Building with create_perl_lib.sh

We start the script

b4 src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

1/include/

) HTD HTD HD HD H

og_internal_ti

items« wird nicht v

shmle erlwrap and

[>] src ; bash [>] src @ bash [>] doc : oosplash

Illustration 58: Build the perl library

And there we are.

First it starts the SWIG generator for a perl module. After the swig is done its compile time.
One compile for the atrshmlog_wrap.c .

Next compile for the atrshmlog_perlwrapper.c .

And one link line.

All what's left is the test.

Testing the perl bridge

We have first to create a shared memory buffer with atrshmlogcreate. I will use 4711 and 8 for it.
Then the init for the area. Next the test of the bridge. Then the reader and the convert.

At last we can check for the result log.

And because it was already done for the C test program we do it in short form now.

b4 src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

ronment startshell

| you can use the files inst

[>] src : bash a src : bash > | doc : oosplash

Tllustration 59: Test of the perl library

HM. Worked as expected.

And here the result for the log after the fetch from the reader.

b4 src : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

[>] src @ bash [>] src : bash [>] doc : oosplash

Tllustration 60: Test log output

OK. So we have the log in here.

Details

Now we make it for the bridge in C.
Take your favorite text editor and open the Atrshmlog.i.

The file is not so complicated. Its only a bit bigger than a good SWIG example because of the rough
hundred functions we have in here.

It starts with the usual comment stuff.

Then the definition of the module. I use a Camel case here like in most modules in perl.

Next is the code block for the wrapper file with the usual include of the C module.

What follows are the prototypes of the helpers that we will need.

There is only small need for helpers here — compared to the python its a really thin layer.

We need the otherwise inlined gettime.

And for the SWIG way to handle output the helpers of get_inittime, get_readtime and get_statistics.

The SWIG way is done by conversion of output pointer parameters into temporary variables — and
then to give back them on the perl stack which makes them a simple return array.

So we get an array with two values from the get_inittime and the get_realtime.

For the get_statistics its a array of — well — hundred values for now. I simply say that's OK for me,
after all I have hundred counters in place. And only 85 are in use now.

Last are the read and read_fetch helpers. They need a buffer and I have made it a full length one.

So with the small hacks for peek and poke the included code finish.

Next is the typemap include. I had a strange result when I had a comment after the thing — so I
removed the comment and anything is now back to normal.

Its for the OUTPUT parameters, see later.
Then we have the typemap for the c string buffer handling in read and read_fetch.

I had some trouble with two things in the first place, so I added two defines to make the compiler
work again.

Perhaps this is not needed for your SWIG implementation.

The n the ignore block follows. I simply cannot use the raw prototypes, so I use the include of the
interface and the raw from the internal to make the SWIG see my C module functions.

This has a downside : I had to make for some variables a SWIG directive to NOT get some silly
setter stuff.

And I catched some stuff from stdint.h here in too.
So that for the ignore block.

Next the translation of the names follow. Most is to cut of the atrshmlog__ prefix. For the helpers its
the additional atratrshmlog_ prefix.

After that is set the include of the interface header is done.

Last are the prototypes of the helpers and the modifications to make the OUTPUT and cstring
buffer things to work.

Now we can switch to the wrapper helpers code.

Open the atrshmlog_perlwrapper.c with your favorite text editor.

We start with the usual comment stuff.

Then the includes. We need a strlen in the write, so we have also the string.h header here.
First is gettime. Its more or less the Macro version here.

Next is write binary. We get at least a address and the length in here.

Then the heart of the client log, the write. We use a string here and take its length. No binary in
here. If you need binary use the write_binary instead.

Next are the two getter for times. We need to make the output thing work, so no struct as return
value in the perl layer. Instead we get with the OUTPUT typemap thing here two values on the

return stack — which makes a array with two values for me. Perfect.

Then the get statistics. Again its only about a different interface and again the OUTPUT is used.
This time you get 100 values in the return array.

For read and read_fetch we use a thread local buffer — its a malloced one and a big one.

So if you really plan to do the read or read_fetch thing you will need memory, and if you use
multiple threads its for every thread an additional Mib.

We already made it for peek and poke in the definition file. So no implementation here.

And this is it. We are through alrea.... Ahem. OK.

The SWIG generated too.

I started after the XS didn't make it.

So first thing first — get an example and see how its done.

Swig's home page is OK for it. And it was a very simple one.

I checked also some things on google and found this should be easy. So I made the first approach.

And - BANG. Got compile errors for things I did not use in the first place — that's frustrating,
crashing because of a thing you didn't need.

First was the conversion of a wchar_t value — the generated function was simply not there.
So because I even don't need it I made a define hack in the compile script.

Next was a missing off64_t. OK, next define.

After an hour I was up and running.

Next was to get info about the get_statistics thing. I got a scalar reference — nothing you can use in
perl for the thing.

I checked google and found a nice article for perl98 about a return of arrays in C for perl. The thing
was easy to make, some simple helper to alloc mem, then do the call of get_statistics with the
returned scalar reference, then use some getter function to do the fetches into an perl array — and
then delete the no longer alloced in between array.

Sounds great — for a C developer.
For a perl user after 20 years, well, horrible.

So I checked again when I made the get_inittime. And this time I found the real thing. A function
that uses an OUTPUT in the prototype delivers a value back. Having more than one OUTPUT
simply delivers multiple values. And for the types I had it was the simple number stuff — and so I
got an array with two values back.

That was for a C developer a bit frustrating, but a helper did the job.
For the perl user it was - well, as expected. No big hooray or so. Simple use it.

Back to get_statistics.

Make a helper, use the array in between and see the thing was done in the wrap.c again. And it was
OK.

Nice. Now the last three hours — the read and read_fetch.

Again the helper was needed because of the stuff that is delivered via pointers to the caller. I needed
the OUTPUT again.

For the major part, the buffer, I had again to check. And I found a thing that worked for binary and
did the allocation and the free in perl itself. OK, this was what I had in mind. For python the code
was done in the core functions, so I simply made copy's and changed parts of them. After the three
hours I had a working read_fetch demo.

Last hour. Cleanup the no longer needed. Make some helpful constants and rename the things.
Again the help of SWIG.org did the job.
And so we have now a SWIG generated wrapper.

Check the doswig.sh for the conversion and for a small hack for a erroneous construct that I made
here.

Now open the Atrshmlog_wrap.c in your favorite text editor.

You find at the beginning the code for my two problematic compiler no-go.
Then you can skip the swig machinery code.

It about line 2100 when we are back in the module.

The SWIG first handles some variables and return struct things. I don't need them, but SWIG thinks
it could not hurt.

For the variable's I tolerate the getter's. But the setters - I don't need them. So you are having now
some immutable directives in the interface header to block that.

After the setters and getter's we enter the REAL stuff in 2300.

Attach.

Its a simple one, no parameters, only a return value.

And yes, its actual an int in Linux land here. So we get a simple wrapper.

Ignore the get_statistics here, its dead.

Next is the writeO . Some more parameters, but that's it.

Sleep nanos is simple, only a parameter, and again its an int for SWIG and we are in.

As you can see it is no big deal to read it. But to write would be a lot more work. So I am happy the
generator works....

After the environment handling stuff with strings we enter the big number of simple setter and
getter like functions.

Most look like the first two of them.

Some minor things to mention.
The area things are done in the jni and python by using numbers. Here they are scalar references.
About line 4400 we hit the otherwise inlined functions from the interface .

What follows are the prototypes from the definition file for the create, the delete, cleanup_locks and
init_shm_log. After this we have the helpers in place.

The gettime is easy. The write_binary has some more to do. But again only parameter stuff.
With the get_inittime we enter the magic of OUTPUT. It simply works, so I don't question it.
Then the real get_statistics is in.

Its a big — but otherwise boring — version of the get time things.

And that's it for the wrap.c

Now the last thing we need — and the most important for the perl user — is the generated pm file.
Fire up your editor and load it in.

To make things easy you can skip the first lines. From line 50 on we have our new functions for the
module.

The next we have is the not needed stuff for the return structs.

With line 200 we are in again. SWIG makes heavy use of structs and defines and constants and
enum's in the generation, so we have them all in.

To be honest its a bit too much in my experience, but if it does not hurt I take it.

So you can now import it — have the shared lib and the compiler libs in place — and use it.

The one fits all SWIG approach

After I had done the initial jni stuff it was clear for me to make it to other languages too.
So on my first list I had python, perl and for those others SWIG in case they use that.
For the perl I had to start at with my python experience.

I tried the standard perl way, the XS, but failed. So I switched to SWIG — which I had on my list for
later anyway. And it worked out.

So my SWIG was already done. But I don't know if I will change to XS back and so this is the
vanilla SWIG chapter.

I chose as target the tcl — another now over 20 years well known language to support the embedding
and to be embedded in over systems thing.

So we will ignore the perl swig solution for now and simply start from ground zero.

If you need another language you should do some experiments with the SWIG to find out if it
supports your language as it did for perl and tcl.

How it works

The SWIG uses its definition file to build a wrapper C code file in tcl. No other files are in. So you
have in place the swig wrapper, the additional C code file with the helpers and the C module itself.

The module is a direct used implementation. Under cover you use the C module. The module is
capable of doing its job simply by using the internal infrastructure as in a C environment. No need
for changes inside.

This means you get in theory the same speed as for the C module itself. The only thing that slows
down is the tcl parameter handling in the bridge code itself.

The rest is more or less simple. Use of the function and no object stuff. Simple raw data types, no
classes, no exceptions and no use of the tcl side. Barely some string creations.

If you are interested the atrshmlog_swigwrapper.c is a good start.
The module gives also the a small number of constants to the user.
Also the enum's are there, but here you have to use the C notation with the in C usual prefix.

A simple load gets it in.

How to use it

The user needs the following parts:
* Shared library or dll Atrshmlog

This is the bridge code from the SWIG code atrshmlog_wrap.c , the

atrshmlog_swigwrapper.c and the linked library from the C module, libatrshmlog.a. You
need also the compiler support lib's and in case of the mingw port the additional dll ' s of the
mingw system.

* The support programs

You need the matching C support programs for the basic stuff you don't want to reinvent.
Reader, converter, even create and delete. So if you need a pure (?) own language only
solution you can replace them with your own code counterparts. But for now I deliver
nothing so you should start with the C programs.

So you first have to build it — again I am not delivering binary code, only source, so if you are
interested in binary you have to contact me and I will see what I can do. But for now you have to
start with the SWIG's bridge file atrshmlog_swigwrapper.c and Atrshmlog.i.

How to build it in the first place
We start with the C module.

After this is in place we have to check our next options.

We have in place an implementation that should work out of the box for Linux and tcl 8.6.

The SWIG directory

We start with the basics.

The SWIG stuff is located parallel to src — so we start at BASEDIR/SWIG

E 4 SWIG : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

> | SWIG ; bash > | SWIG : bash

Tllustration 61: The SWIG base directory

OK. We have a readme — check it — and a bin, a doc and a src.

For the bin its clear, there are some scripts.

The bin directory

That's my bin so far.

E 4 bin : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

> | bin : bash > | SWIG : bash

Tllustration 62: The bin directory with the scripts

We have here one script that is interesting now. The rest becomes clear when it comes to a real build
cycle. So for now a short info about the scripts

* compile_swig_stub.sh
The main build script — its the same for the SWIG layer as the makeall.sh for the C module.

* create_swig_lib.sh
The helper to compile the bridge C code and link to the library to get — ahem — the library ?
I think here we have to distinguish the library (C module) and the SWIG bridge library for
the target languages stuff. We call the later from now on the SWIG library.

* getfrommain.sh
The script to transfer the headers and the library to SWIG directory's. This is the real thing
here, see below.

* doswig.sh

This is the helper to do the swig generation for the SWIG wrapper library..
* dot.swig.sh

The environment setter.
* dot.swig.sh.linux

The Linux version — for now the same.

OK. There were one real thing, but its one for now. The getfrommain.sh. It transfers the headers and

the library to the mystery SWIG directory's.

F 4 SWIG : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

> | SWIG : bash > | SWIG : bash

Tllustration 63: The source directory for SWIG

So that's now the SWIG things, and its the src.
OK. So we transfer with getfrommain.sh from the src what's there to the whole bunch.

Meaning: you should have the real headers in src in place. And the real library. Don't mix platforms
or versions — then you have to ignore that script.

If everything is right we can execute the script now. Its mandatory that you are in the SWIG
directory for its execution. So we call it relative with bin/getfrommain.sh.

Copy headers and lib from the C module

And so we do it

E 4 SWIG : bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe
= snm]

tfrommain.sh

> | SWIG ; bash > | SWIG : bash

Tllustration 64: Transfer of the library and the headers

Not much noise. Well, we will see....

Now its time to check for the src directory's.

Change into your src directory

We change and then see for it

src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

frommain.sh

libatrshmlog.a

> | src : bash > | SWIG : bash

Tllustration 65: Inside the source ready for build

The src is the real thing. We have again the — adapted - scripts here, so we are free to change them if
we need. For reference there are the scripts in bin, so don't change them in bin till you have done
the whole thing. Start only in src with changing.

We switch to src and now comes the list of the files in there.

* compile_swig_stub.sh
As already said. The main build script..

* create_swig_lib.sh
The helper to compile the bridge and link.

* dot.swig.sh
The setting of the environment variables. Next thing to do.

* doswig.sh

The helper to make the SWIG generator run.

* Atrshmlog.i
The SWIG definition file for this module.

* atrshmlog_swigwrapper.c
The SWIG bridge with helpers code.

* dot.swig.sh.linux
The setting of the environment variables for Linux.

* libatrshmlog.a

The copy of the library from the C module (check time stamp and size and whatever you
need too ... should be from BASEDIR/src)

e atrshmlogtest.tcl

Start the simple test. For tcl

For the directory's : includes is clear — check for the files and for the time stamp and length of the
headers from BASEDIR/src.

OK. Now that we know that tree, check for the others.
When you are ready, you can read on.
Ready ? So fast — well, if you said so.

Its now time to do the thing.

Setting the environment

We simply source dot.swig.sh

E 4 src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

. dot.platferm.sh

frommain.sh

libatrshmlog.a

> | src : bash > | SWIG : bash

Tllustration 66: Setting the build environment

No noise here. If you insist you can check the environment.

Next is to start the build.

Building with create_swig_lib.sh

We start the script. This time we don't have the target in place, so we have to give it as a parameter.
And because the tcl does not have a module by default we give a second parameter to make it to
surround our functions in a package with -namespace

4 src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

THT HT HT HT H

shmlc ~.0 and -latrs

> | src : bash > | SWIG : bash
Tllustration 67: Create the tcl library with SWIG

And there we are.

First it starts the SWIG generator for a tcl module. After the swig is done its compile time.
One compile for the atrshmlog_wrap.c .

Next compile for the atrshmlog_swigwrapper.c .

And one link line.

All what's left is the test.

Testing the tcl bridge

We have first to create a shared memory buffer with atrshmlogcreate. I will use 4711 and 8 for it.
Then the init for the area. Next the test of the bridge. Then the reader and the convert.

At last we can check for the result log.

And because it was already done for the C test program we do it in short form now.

E 4 src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

nvironment startshell

you can use the files ins

> | src : bash > | SWIG : bash

Illustration 68: Test the new tcl library

HM. Worked as expected.

And here the result for the log after the fetch from the reader.

4 src: bash — Konsole

Datei Bearbeiten Ansicht Bookmarks Einstellungen Hilfe

H src : bash =3 srec : bash

Tllustration 69: The log result

OK. So we have the log in here.

Details

Now we make it for the bridge in C.
Take your favorite text editor and open the Atrshmlog.i.

The file is not so complicated. Its only a bit bigger than a good SWIG example because of the rough
hundred functions we have in here.

It starts with the usual comment stuff.

Then the definition of the module. I use a Camel case here like in most modules in perl.
Next is the code block for the wrapper file with the usual include of the C module.

What follows are the prototypes of the helpers that we will need.

There is only small need for helpers here — compared to the python its a really thin layer.

We need the otherwise inlined gettime.

And for the SWIG way to handle output the helpers of get_inittime, get_readtime and get_statistics.

The SWIG way is done by conversion of output pointer parameters into temporary variables — and
then to give back them on the interpreter in the natural way. For perl its an array on stack which
makes them a simple return array. For tcl its a list.

So we get an tcl list with two values from the get_inittime and the get_realtime.

For the get_statistics its a list of — well — hundred values for now. I simply say that's OK for me,
after all I have hundred counters in place. And only 85 are in use now.

Last are the read and read_fetch helpers. They need a buffer and I have made it a full length one.
So with the small hacks for peek and poke the included code finish.

Next is the typemap include. I had a strange result when I had a comment after the thing — so I
removed the comment and anything is now back to normal.

Its for the OUTPUT parameters, see later.
Then we have the typemap for the c string buffer handling in read and read_fetch.

I had some trouble with two things in the first place, so I added two defines to make the compiler
work again.

Perhaps this is not needed for your SWIG implementation.

Then the ignore block follows. I simply cannot use the raw prototypes, so I use the include of the
interface and the raw from the internal to make the SWIG see my C module functions.

This has a downside : I had to make for some variables a SWIG directive to NOT get some silly
setter stuff.

And I catched some stuff from stdint.h here in too.
So that for the ignore block.

Next the translation of the names follow. Most is to cut of the atrshmlog_ prefix. For the helpers its
the additional atratrshmlog_ prefix.

After that is set the include of the interface header is done.

Last are the prototypes of the helpers and the modifications to make the OUTPUT and cstring
buffer things to work.

Now we can switch to the wrapper helpers code.

Open the atrshmlog_swigwrapper.c with your favorite text editor.

We start with the usual comment stuff.

Then the includes. We need a strlen in the write, so we have also the string.h header here.
First is gettime. Its more or less the Macro version here.

Next is write binary. We get at least a address and the length in here.

Then the heart of the client log, the write. We use a string here and take its length. No binary in

here. If you need binary use the write_binary instead.

Next are the two getter for times. We need to make the output thing work, so no struct as return
value in the SWIG layer. Instead we get with the OUTPUT typemap thing here two values on the
return stack — which makes a array with two values for me. Perfect.

Then the get statistics. Again its only about a different interface and again the OUTPUT is used.
This time you get 100 values in the return array.

For read and read_fetch we use a thread local buffer — its a malloced one and a big one.

So if you really plan to do the read or read_fetch thing you will need memory, and if you use
multiple threads its for every thread an additional Mib.

We already made it for peek and poke in the definition file. So no implementation here.

And this is it. We are through alrea.... Ahem. OK.

The SWIG generated too.

I started after the XS didn't make it.

So first thing first — get an example and see how its done.

Swig's home page is OK for it. And it was a very simple one.

I checked also some things on google and found this should be easy. So I made the first approach.

And - BANG. Got compile errors for things I did not use in the first place — that's frustrating,
crashing because of a thing you didn't need.

First was the conversion of a wchar_t value — the generated function was simply not there.
So because I even don't need it I made a define hack in the compile script.

Next was a missing off64_t. OK, next define.

After an hour I was up and running.

Next was to get info about the get_statistics thing. I got a scalar reference — nothing you can use in
perl for the thing.

I checked google and found a nice article for perl98 about a return of arrays in C for perl. The thing
was easy to make, some simple helper to alloc mem, then do the call of get_statistics with the
returned scalar reference, then use some getter function to do the fetches into an perl array — and
then delete the no longer alloced in between array.

Sounds great — for a C developer.
For a perl user after 20 years, well, horrible. Guess its the same for the tcl folks.

So I checked again when I made the get_inittime. And this time I found the real thing. A function
that uses an OUTPUT in the prototype delivers a value back. Having more than one OUTPUT
simply delivers multiple values. And for the types I had it was the simple number stuff — and so I
got an array with two values back.

That was for a C developer a bit frustrating, but a helper did the job.

For the perl user it was - well, as expected. No big hooray or so. Simple use it. Same for my first
steps with tcl lists.

Back to get_statistics.

Make a helper, use the array in between and see the thing was done in the wrap.c again. And it was
OK.

Nice. Now the last three hours — the read and read_fetch.

Again the helper was needed because of the stuff that is delivered via pointers to the caller. I needed
the OUTPUT again.

For the major part, the buffer, I had again to check. And I found a thing that worked for binary and
did the allocation and the free in perl itself. OK, this was what I had in mind. For python the code
was done in the core functions, so I simply made copy's and changed parts of them. After the three
hours I had a working read_fetch demo.

Last hour. Cleanup the no longer needed. Make some helpful constants and rename the things.
Again the help of SWIG.org did the job.
And so we have now a SWIG generated wrapper.

Check the doswig.sh for the conversion and for a small hack for a erroneous construct that I made
here.

Now open the Atrshmlog_wrap.c in your favorite text editor.

You find at the beginning the code for my two problematic compiler no-go.
Then you can skip the swig machinery code.

It about line 2050 when we are back in the module.

The SWIG first handles some variables and return struct things. I don't need them, but SWIG thinks
it could not hurt.

For the variable's I tolerate the getter's. But the setters - I don't need them. So you are having now
some immutable directives in the interface header to block that.

After the setters and getter's we enter the REAL stuff in 2250.

Attach.

Its a simple one, no parameters, only a return value.

And yes, its actual an int in Linux land here. So we get a simple wrapper.

Ignore the get_statistics here, its dead.

Next is the write0 . Some more parameters, but that's it.

Sleep nanos is simple, only a parameter, and again its an int for SWIG and we are in.

As you can see it is no big deal to read it. But to write would be a lot more work. So I am happy the

generator works....

After the environment handling stuff with strings we enter the big number of simple setter and
getter like functions.

Most look like the first two of them.
Some minor things to mention.

The area things are done in the jni and python by using numbers. Here they are scalar references in
perl, pointers in text in tcl.

About line 3750 we hit the otherwise inlined functions from the interface .

What follows are the prototypes from the definition file for the create, the delete, cleanup_locks and
init_shm_log. After this we have the helpers in place.

The gettime is easy. The write_binary has some more to do. But again only parameter stuff.
With the get_inittime we enter the magic of OUTPUT. It simply works, so I don't question it.
Then the real get_statistics is in.

Its a big — but otherwise boring — version of the get time things.

And that's it for the wrap.c

Another platform : CentOS

OK. My box is running a fedora 23 so no problem for the C 11 compiler.

But when I tried the CentOS 7.2 (at this time the best known clone for the RedHat 7) I found the
compiler a bid off topic (its now October 2016 and still a gcc 4.8 in place).

Yes, it had the c11 switch.

And yes, it had not the optional header stdatomic.h in place. So I googled a bit and came up with
this.

How to make a running module for CentOS 7.2 ?

Its in the unsupported directory now. I will not integrate it because you can have a different
compiler, so I leave that to you.

But I give you here the road map to do it.

Get the compiler to work that you need

First problem for the compiler is that you can not get any rpm so far. Seems that the need is not that
big after all, so you simply have to do it for the old way. Get the source and then build it from
scratch.

Getting the source is not a problem. Entry point is gcc.gnu.org. There we find links for downloads
and we are in a tree that contains the whole versions available.

OK. We had a 4.8, and a 4.9 could do the job after some checks. But then I had experience with the
5.3 and so I switched to the latest 5.4 .

In theory you can make it local, no need for root here. But I still use root when it comes to a
compiler so I made a g5 directory for root and unpacked the thing.

You should be careful before you start — its a 5 GB thing after all to make it.
Next I went into the configure

./configure --with-system-zlib --disable-multilib --enable-
languages=c, c++

and got missing lib's for gmp, mpfr and mpc stuff.

HM. Had already made a full update and after checking with yum the things were already in place.
So the devel companions where missing. Some yum install mpr-devel etc stuff

yum install gmp-devel
yum install mpfr-devel
yum install *mpc*

did the work and I could end the configure successful .

Now the usual make... took a while, about 2 hours on my box.
Make install again done.
I found my new buddy at /usr/local/bin and it was x86_64-unknown-linux-gnu-gcc-5.4.0.

So much for names you can expect today.

Changing the build scripts

I started with bin then. First the compiler stuff.

case SATRSHMLOG_PLATFORM in
linux)
linux x86_64 gnu
CC="gcc -std=gnull"
CC="x86_64-unknown-linux-gnu-gcc-5.4.0 -std=gnu11"
PICFLAG=-fPIC
OPTMODE=-03
That wasn't hard after all. Simply replace vanilla gcc. This was the g99.sh.
case SATRSHMLOG_PLATFORM in
linux)
linux x86_64 gnu
it CC="gcc -pthread"
CC="x86_64-unknown-linux-gnu-gcc-5.4.0 -pthread"
LIBMODULE=-latrshmlog

and this was ell.sh.

For the dot file I made a copy dot.platform.sh.centos and adapted.

date

echo "set basedir "

we set the basedir. so this must be used inplace in the correct dir
ATRSHMLOG_BASEDIR="$(pwd)"

export ATRSHMLOG_BASEDIR

echo "set platform"

we set the platform for build

ATRSHMLOG_PLATFORM-=linux

ATRSHMLOG_PLATFORM=cygwin

ATRSHMLOG_PLATFORM=mingw

export ATRSHMLOG_PLATFORM

echo "set path"
we need a working path. so we assume its the basedir relative in bin

what makes the thing

PATH="$PATH:$ATRSHMLOG_BASEDIR/bin:.:/usr/local/bin"

export PATH

date

end of file

Not much difference, only the additional /usr/local/bin in the PATH.

The makeall.sh ran till it came to the C++ files. There I had at least some luck, the 4.8 could have
made it if it weren't for the multithreading. It simply could not make the C++14 switch, so I had
switched back to c++11, but that didn't work either. It complained to need a new one. So I gave it to
the thing in g++14w.sh.

case SATRSHMLOG_PLATFORM in
linux)
linux x86_64 gnu
CPP="g++ -std=c++11 -pthread -Wall -Weffc++ -fdump-tree-original"
CPP="g++ -std=gnu++1y -pthread -Wall -Weffc++ -fdump-tree-original"
PICFLAG=-fPIC

OPTMODE=-03
LIBMODULE=-latrshmlog

»

After that my makeall.sh ran complete.

Testing

And that's it. I made a short test run and got my wanted result:

0000009300 0000000000009300 000 000000000000000000 000086453358488444
000086453358488444 000000000000000000 1477592391142288024 1477592391142288024
000000000000000000 0000000001 P 0000000001 hello, world.

So there is nothing special for the CentOS 7.2, its only the compilers that had a glitch for me this
time. The rest works as expected. I assume its the same for all from 6.0 on up to today's 7.2.

If the RedHat team will switch to a newer version of gcc you can forget this. Its only an interim
needed workaround, and if you can get a rpm even not the time consuming compile is needed.

If you have to do it you must have the library's in place and you must have sufficient space for it. In
principle you can say its a needed precondition for the module and you are through. And if you
don't install that thing global, but in a local directory of yours you even don't have to be root for it.

So I can live with that.

Another platform : cygwin

For those who want to use it, there is a plain cygwin port.

Cygwin serves for the other port to fenster;plural as a build environment, but is not used for the
module. See the mingw for that.

So the cygwin build is for those who are really trying to use cygwin — and there are at least some
guys who are really interested in it.

So here we are for a cygwin.

You have to download not the full distro.

First check the cygwin master at
http://www.cygwin.com

for the latest download binary.

Load it on the box.

Then start it and give the permissions the thing needs.

After this you have to select some directory's and places and then the checking for download
packages starts.

What to download ?

There is some stuff that is needed, but its only a small fraction.
* BASE
The base package of course. All in.
* Admin

The cygrunsrv. This is vital because you wont get shared memory if you are not having it up.
This was formerly the cygserver and in BASE. Don't know why but now the script to
configure is in BASE and its cygserver-config, but the main binary has been moved (at
least in the version i got in 10.2016).

¢ Devel

cygwin-devel, binutils, doxygen, gcc-core, gcc-g++, gdb (add the mingw if you plan to do
that too)

¢ doc

cygwin-doc

* editors
emacs, vim

* interpreters
perl

e libs
all in.

* shells
bash

* utils
dos2unix

* publishing

texinfo and doxygen

That should do the job.

After the unpack
We simply change to the BASEDIR

E ~/atrshmlog/sre [E=N |E=E

% mkdir atrsh 1'.:I-|:- g

5 cd a‘tr‘s.i‘m"lu:.g"

hmlog_1_0_0.tgz

dot.platfo in java perl readme. txt
wvawin dot.platform . N python src unsupported

Illustration 70: The cygwin base directory after unpack

We start with source of the platform file. Its already there. Its name is
dot.platform.sh.cygwin

as you already could see in the picture.

Prepare headers

Next we prepare the headers. They are already adapted so we only have to copy them from the
alreadythere directory.

£ ~/atrshmlog/src == E=R =

2016 11:03:11

m

=
reader. c
readerb. c / hmCPPfiles
readerc. c 1 do. txt
atrshmlogreaderd. c do

Jatr
alreadythere/at

Illustration 71: Copy for the adapted headers.

Nothing dramatic so far. We start with the first compile.

First compile

The makeall.sh in action:

c ~fatrshm|ngfsrc

impl -:let env

impl

imp]

1'|p'| y

ipile
pile

mpile

impl_get_ fence_3.
11p'| _get_ Tence 4.

Illustration 72: Compile the module with makeall.sh

After a full 3.5 minute round we have the result.

E -/atrshmlog/sre

Illustration 73: Time for a compile in cygwin on my box

The cygserver start

Next we need the cygserver to run. So we have to use an administrative shell this time:

= [

Behandeln von Kompatibilitatsproblemen
Dateipfad affnen

%) Als Administrator ausfihren
An Taskleiste anheften
An Startmenu anheften

Vorgangerversionen wiederherstellen
Senden an

Ausschneiden

Kopieren

Verkniipfung erstellen
Laschen

Umbenennen

Eigenschaften

Mozilla Firefox

Command Prompt Paint

Illustration 74: Getting an administrator's shell

Open it with the right button context menu as administrative application.

DE . i)

o 102
W a6 |

OK. We can now start the server . Its mandatory for the use of the module. No ipc operations work
without it.

IE -/atrshmiog/sre

Falk Navi-Manager

Illustration 75: Starting the cygrunsryv for the service cygserver

Up and running.

Create of a buffer

Now we can create the buffer as usual.
$ atrshmlogcreate 4711 8

does the job.

E -/atrshmlog/sre

i
of buffer is 8

paste this into the user pro = environment startshell
or into the profile or ENV T

use a login sh you can use the files instead.
ttach for s

% . dot.atrs

Illustration 76: Create the shared memory buffer

We can set the environment with the dot file.

Making the area with init

Now we init as before:

E -/atrshmlog/sre

aste this into the I proce environment startshell
into the profile or ENV file

e a login shell you can use the files instead.
h for thi

Illustration 77: And initialize the area

Its the same. We use the count already set by the dot file here.

First test with atrshmlogtest00

And here we go for the first test.

E -/atrshmlog/sre

Illustration 78: Running the first test

So far, so good. Now we have to do the transfer into file system.

Reader for transfer

That's when the readerd comes in again.

E -/atrshmlog/sre

mlog
og attach 0 and log : hello,

at
atrzhmlogreaderd «
1 att

with value 9999.
ible 'dl'. Create 1t.

Illustration 79: Starting the reader to transfer the log

So we stop it after the connect is done and the transfer happened.

The second shell with the atrshmlogstopreader.

=

Papicrkorb

IE -/atrshmlog/sre

Falk

Falk Navi-Manager

C -/atrshmlog/sre

Mozilla Firefox

Command Prompt Paint

Illustration 80: Stopping the eager dfter its done.

OK. It stopped. Now we convert the log.

Conversion of the binary to human readable form

The convert with atrshmlogconv

E -/atrshmlog/sre

: hello, world..

vith value 9999.
'dl’. Create it.

_f0.bin" to file "di1/0/atrshmlog_p
161135 readertime

fi.bin' to file "di

Illustration 81: Convert from binary to human readable text

So we have now the conversion done. Last thing is to check the resulting file .

Check the file

E ~/atrshmlog/sre

atrshmlog_p292_t25769803872_
GHU Emacs

Illustration 82: The result log

OK. We have done it for cygwin, too.

Another platform : mingw

For the use of the module we don't need a C11 compiler — simply linking the library is enough. For
example we can then use it for ANSI C or even worse thing.

So we can build it with the mingw cross compiler that is part of the cygwin system and use it in the
C programs for the fenster;plural platform.

This has a big advantage — we don't have to adapt the scripts to another platform. We can simply use
them as in posix or cygwin environment builds. Only the compiler and linker stuff is different. And
so there is already a platform dot file for this.

One warning: If you have build a cygwin version you should NOT build in the same place the
mingw version. Take another directory and start there. In this example I had killed the cygwin port
and started for an empty directory from ground. So don't mix them.

Here is the basedir

£ ~/atrshmlog
5 mkdir -El'tl"‘E.}'|1":|-|:|g
5 od -':‘tr's.i'u'l"ln:ng"

:hmlog_1_0_0. tgz

~fatrshmlog/sri

~/atrshmlog

.sh dot.platfo h. Tinux java o readme.txt SWIG
= vgwin dot.platform.sh.mingw sh src unsupported

3, 25. Okt 201

Illustration 83: The mingw base directory in a cygwin system and setting the environment

The setting of the environment variables done with
dot.platform.sh.mingw

as source file.

Copy the headers

We copy the already adapted headers from the alreadythere directory.

= ~/atrshmlogy/src

5 cd atrshmlo |:|._.-;

.mingw atrshmlog.h

ilog_internal.h.mingw atrshmlog_internal.h

== EcR <=

Illustration 84: Copy of the already adapted headers

OK. So we are ready for the makeall.sh now.

Compile with makeall.sh

Nothing special. Simply as always the makeall.sh.

E -/atrshmlog/sre

5 od -El‘tr“E.l'l'I']Eu].-:

et platform
et path
D1, 25. Okt 2016 12

$ od src
5 cp alreadythere
5 cp alreadythere

% makeall.sh|

=R

Illustration 85: Starting the build with makeall.sh

And this time after 9 minutes....

End of compile

We crash land for the last program, its the C++ compiler problem with threads via pthread — we
didn't turn that on because we use win threads. If you check the output all is normal till you hit the
atrshmlogtest03.C.

£ ~/atrshmlog/src == EcR

a class std::packaged_task<long int(int, int)=}«
C! :

From a‘tr:.hm]nqte:tGB C:25:0:
2/5.4.0 1'r|c'|ude-'c-v—|-F1'|.4tur“e 121:11: Anmerk : of =std:
:value_type {ak lass =.td .r_acl- aq&d ‘ta-:l-{

n _.F'usr‘,.-‘"li f : 4-wed-mingw32/5.4.0/include/c++ /memory:64:0,
1 Sfusr/Tib 64-mingw32/5.4.0/include/c++/thread:40,

a‘tr=-hm'| gtest03

4-min f 0 ‘st1_construct.h: In In iierung von svol

vardIterat wardIterator) [with _ForwardIterator = std::future<long int>
-wed-mingw32/5.4.0/include/c++/bits/st1_construct.h:151:15: erfordert durch

r“\\'ar‘dI‘ter‘atnr, _ForwardIterat std::allocator<_T2=&) [with _ForwardIterato

_Tp = =td uture<long int=]

5.4.0/include/c its/st1_wector.h:424:22; erfordert durch -:td
[\.ﬂ‘th _Tp = std: 1'utur“&-:'|nr1u int=; _Alloc = std: a'l'lncatur-::td

--nn h1er" erfordert
0/include/c++/bits/=t1_construct.h:127:11:
:riterator_traits<std: :future<long int=*=::value ‘type faka cla

125:0:
include/c++/Future:115:11 nmer k declar :rt on of =std::1i
:value_type {aka class st :1'uture<'lnr'll:| int

Illustration 86: A crash landing for test03

There is a patched shmCPPfiles list file in case you don't like a crash landing at the end. You can
copy it together with the includes and no 03 program will be build then .

Sad, but not a real problem. The rest is done. So we can start with testing.

Path handling for vanilla cmd

We use the programs directly from a fresh vanilla cmd — no shell this time. If you insist you can do
this on another box where no cygwin is installed (not quite right — you will still need the compiler
stub dll for mingw, but that's a small price to pay).

]

& Command Prompt [re|[e= |@
23.18.20816 18:38 seal.zh P

23.18.2816 16:53 seal.zh™
19.168.20816 18:37 setpath.cmd
23.108.2016 18:38 unseal.sh
23.18.2016 18:28 unseal.sh™
13 Dateifend. 13.358 Bytes
2 Uerzeichnis{(se)>, 17.197.684_864 Bytes frei

)

C:cygwinbd-homesatrsatrshmlog~bin»setpath
C:cygwinbd-homesatrsatrshmlogsbin>rem set the path

C:cygwinbd-homesatrsatrshmlogbin>*SET PATH=C:“ProgramData*Oracle~Javasjavapath;
C:sWindowsssystemd2 ;C:x\Mindows ;C:sWindowss\System32:Whem; C:s\WindowssSystemd2sWind

owsPowerShellswl 8N C:\Program Files“Microsoft 5QL ServerClient SDENODBCA118MTo
ols~Binn%;C:“Program Files {(xB6>“Microsoft S5QL Server~128~Tools“Binn%;C:“Program
Files“\Microsoft 2QL Server128:Tools“Binn“;C:“Program Files“Microsoft SQL Serve
1 20DTS%Binn~;C:“Program Files {(x86>“Microsoft S5QL Server-12B-~Tools“Binn“Manag
ementStudios; C:N\Program Files (xB6>“\Microsoft S5QL Servers12B5DISuBinn“;c:“cugwin
b4 susrsx86_64-uwbd-mingw3d2hsys—root ningusbin;ic i cyguwinb4ihomesatrsatrshmloghsrc

C:scyguwinbdshomesatrsatrshmlogsbin>rem end of file

C:scygquinbdshomesatrratrehmlogsbhin> b

Illustration 87: Setting the path for a cmd

OK. Setting a path is after all not so dramatic. Simply check for your installation if the path is not
the same. Now its time to start something.

Creating the buffer

We create the buffer as always with atrshmlogcreate. But this time its different for the parameters.
We need here an internal info. The shared memory approach of fenster;plural is the same as a
memory mapped file. So we need a file name for the thing and in theory a real file in the file
system.

To make things more difficult there are so called Global and Local files. The Global files can be
used from anybody, the Local only from sessions for the same User.

So if you try to understand the cygwin thing — bingo. A global file approach to cover the shared
memory.

So I implemented 16 Local and Global file names in the module, and you get them via index. To
make the 0 not a problem its indexed from 1 to 32. And the attach then uses that index via
parameter - and if you are lucky you simply get the parameter back for the user programs.

So our first parameter is 1. The second is still the number of buffers. I use the 8 again.

EM Command Prompt - atrshmlogereate 18 | = || [=] |@
C:cygwinbd-homesatrsatrshmlog~bin>rem end of file

C:cygwinbd-homesatrsatrshmlogsbincd ..
C:cygwinb4d-homesatrsatrshmlogrcd src

C:scyguwinb4d-homesatrsatrshmlogssrcratrshmlogcreate 1 8
=hm log create.

paste this into the user process environment startshell
or into the profile or ENU file

ATRSHMLOG_ID="1"
export ATRSHMLOG_ID

if you have to use a login shell you can use the files instead.
zee atrshmlog_attach for this

enter ctrl-C to kill it after ref counter iz non zero.
or use a kill util for this 248.

Illustration 88: Create of a shared mapped memory via pagefile.sys

Create done, but....

.... the program hangs. It will not end. And that has to do with the fact that we didn't used any real
file here. So the mapping was done in fact for part of the page file. That's a bid wired, but it works
for me, so I didn't made the other thing.

OK. So why it hangs ?

Well. The mapping for the page file is as all mappings done with reference counting. So if there is
no process holding a reference — the kernel will simply delete the mapping and set free the memory.

So if we don't hang — we would likely end and the mapped memory freed before we had a chance to
connect with other programs.

Bingo. That's why the cygwin uses a service for the cygrunsrv — its a permanent running program in
the background, so it can map and then still hold the mapped file till someone is interested in it.

So in the end — without a backup file in the file system its simply the easiest thing to let the program
not die after the create till at least another one has connected.

The init of the area

We now can use another cmd and init then the area as usual. We use the dot file — this time
atrshmlog.cmd — to set the variables for the thing.

EA Command Prompt == |@

ementStudion;C:Program Files (x86)3“Microsoft 5QL Serwer~120~DIS“Binn“;c:“cyguwin]h
b4 usrsx86_64—ubd—mingw32ssys—rootsmningwsbin;c e pguwinb4dshomesatrsatrshmlogssre

m

C:swcyguwinbédshomesatrsatrshmlogsbin>rem end of file
C:swcyguinbd-homesatrsatrshmlogsbin>cd ..
C:scyguwinbdshomesatrsatrshmlogrcd src
C:cyguinbd-homesatrsatrshmlogssreratrshmlog.cmd
C:cygwinbd-homesatrsatrshmlog~src>rem shmid is
C:cygwinbd-homesatrsatrshmlogssre »SET ATREHMLOG_ID=1
C:cygwinbd-homesatrsatrshmlogssre *SET ATREHMLOG_COUNT =8

C:cygwinbd-homesatrsatrshmlogssrcrrem end of file

C:scyguinb4shomesatrsatrshmloghsre >atrshmloginit
=hm log attach and init.
logsystem version is 1.

C:wcyguint4dshomesatrsatrshmlogssrc > -

Illustration 89: Initialize or the area from a cmd

OK. This is more or less the usual now. Important is that we NOT Kkill our create process in this
version of the game before we run the other programs.

First test with atrshmlogtest00

Its time now for our first logging test.

EA Command Prompt |i”£|@

C:cygwinbd-homesatrsatrshmlog~bin>rem end of file
C:cygwinbd-homesatrsatrshmlogsbinkcd ..
C:cygwinbd-homesatrsatrshmlogrcd src
C:cyguwint4d-homesatrsatrshmlogssrcatrshmlog.cmd
C:cyguinb4d-homesatrsatrshmlogssrcrrem shmid is
C:scyguwinb4dshomesatrsatrshmlogssrc>SET ATRSHMLOG_ID=1
C:scyguinbdshomesatrsatrshmlogssrc>SET ATRSHMLOG_COUNT =8
C:scyguwinbdshomesatrsatrshmlogssre>rem end of file

C:cyguinbd-homesatrwatrshmlogssreratrshmloginit
=hm log attach and init.
logsystem version is 1.

C:cygwinbd-homesatrsatrshmlogssrecratrshnlogtestBA
=hm log attach B8 and log : hello. world..

C:scygquinbdshomesatrratrehmloghsre >

Illustration 90: Running a first test from a cmd

OK. This went as always, the program did at least tell us that. So we get the memory next.

Starting the reader for memory fetching

We prepare a new cmd and start the reader.

B8 Command Prompt - atrshmlogreaderd dl o =

C:cygwinbd-homesatrsatrshmlogssre»SET ATREHMLOG_ID=1
C:cygwinbd-homesatrsatrshmlogssre *SET ATREHMLOG_COUNT =8
C:cygwinbd-homesatrsatrshmlogssrcrrem end of file

C:cygwinb4d-homesatrsatrshmlogssrcratrshmloginit
=hm log attach and init.
logsystem version is 1.

C:scyguwinb4shomesatrsatrshmlogssrecratrshmlogtestB@
=hm log attach B and log : hello. world..

C:cygwinbd-homesatrsatrshmlogssrecatrshnlogreaderd di
=hm log attach and loop write file.

logsystem version is 1.

directory iz di

files_per_dir is 10088

ctop via signal reader for pid 2999 with value 7999.
directory not found or not accessible 'dl’'. Create it.
count of initial used fetchers is 4

count of initial wsed writes is 12

enter transferloop ...

Illustration 91: Running the reader from a cmd

OK. Nothing dramatic different so far. In theory we could now get rid of the create — the reader is
connected — but to make things not to complicated we leave the create where it is.

For the data we have now to stop the reader and then check for the file.

Stopping the reader with atrshmlogsignalreader.

E
Papicrkorb

B Command Prompt - atrshmlogcreate 18
C:\cygwinbdshonesatriatrshmlogshin>rem end of file

| @8 Command Prompt

:\cyguin64\homesatriatrshnloghsreatrshnlog.ond
\cyguin64shomesatriatrshnlogisrcyrem shnid is
:\cyguin64shomesatriatrshmloghsrcYSET ATRSHMLOG_ID=1
:\cygwin64-hone\atriatrshnloghsrc>SET ATRSHNLOG_COUNT =8
:\cyguin64\home\atriateshmlogssrcdrenm end of file
ieyguingdshonenstasatrshalogysrcoatyshnlogsignalreader 9999 9999

shm log attach and set reader Flag and p.

logsystem vewsion ic 1.

pid hefore

flag hefore B

iNeygwinb4shomesatriate

winb4shomesatrsatrshmlogssrc,

Smart Switch E# Cornmand Prompt

C:\cygwin64shonenatriatrshnlogisre>ren end of file

Cineygwing4shonosatratrshmloghore datrshnloginit
shn log atta

C:\cygwinE4shomesatriatrs
chn log attach B and log

C:\cyguinE4shonesatriatrshnloghsre >atrshnlogreaderd di
Lhn 10g attach and loop write £1la.

rectory is di

< 1008
signal reader for pid 9999 with value 9999.

Rizectory not Found or not n ble 'di’. Create it.

count of initial used fetchers is

count of initial used wmites is 12

enter transferloop ...

logging stopped by signal 9999 9997 ...

logying done.

wdtor data : time 3865395 count 1 per use 3065395

mand Prompt Paint

Tlustration 92: Usmg szgnal reader to stop the reader - from a cmd

This worked. But I don't have made a cmd for it, so we had to use the raw signal reader instead of
the atrshmlogstopreader script as it is for the other platform.

Try to adapt it and see for yourself how its done.

Conversion of the binary into human readable text

Again I don't have a cmd in place, so we have to use a raw program call here.

EA Command Prompt |i”£|@

C:“cyguwinb4d-homesatrsatrshmlogssrcratrshmlogtestBA
=hm log attach B and log : hello. world..

C:cygwinbd-homesatrsatrshmlogssrecatrshnlogreaderd di
=hm log attach and loop write file.

logsystem version is 1.

directory is di

files_per_dir iz 108088

ctop via signal reader for pid 2999 with value 7999.
directory not found or not accessible ’*di’. Create it.
count of initial used fetchers is 4

count of initial uwszed writes iz 12

enter transferloop ...

logging stopped by signal 9999 9999 ...

logging done.

writer data : time 3865395 count 1 per use 3865395

C:cyguinbd-homesatrsatrshmlogssreXatrshnlogconuert disBsatrshmlog_pl?76_t4856 _F
B.bin 1.txt
=hm log converter from file ’'disBxatrshmlog_pl?76_t4856_fBA._bin’ to file *1.txt’.

1 acquiretime 252857 pid 19276 tid 4856 slavetime 52687 readert
L7086 pavloadsize 42 shmbuffer B filenumber a

winb4shomesatrratrehmlogssre >

Illustration 93: Using the convert from a cmd to get human readable text

This time its in the directory src and its name is 1.txt. We check now.

Check with my favorite text editor. You can use of course yours if you want.

£ ~/atrshmlog/src == E=R =

Illustration 94: The result log

OK. We could make the mingw platform so far. Now its time to add something vital.
The java layer.

This was also made with the cygwin, but the system didn't made it after starting the jvm for
execution. It hang endless. So don't try the jni bridge with cygwin, its no use. Switch to mingw for
that.

The jni layer for mingw

As with the other systems, you do this step by step as for the Linux. Change to the BASEDIR/java
and get the library and headers in place with the getfrommain.sh.

Next go to the right vendor and jdk version, enter the src, source the dot.java.sh and then build it
with the create_jni_lib.sh.

This is done on cygwin environment, but its for the mingw version, don't forget that !

E ~/atrshmlog/java/oracle/jdkl 8.0_102/src | = ” = |@
5 cd -

% cd atrshmlo /

5 makeall.sh =
5 cd ..
5 cd java

5 bin/getfron

5 cd oracle/

5 od jdk1.8.0

g/java/oracle/jdkl. 8.0_102
5 cd src

Te/jdk1.8.0_102

a JSidkl. 8.0_102/src

Illustration 95: Generation of the jni bridge with mingw for vanilla java

OK. We have the oracle and jdk1.8.0_102 in place now. So the build begins.

Building the class files, then the header and at last the new jni bridge dll.

5 cd oracle/

5 cd jdk1.8

.8.0_102
5 cd src

<1.8.0_10

<1.8.0_10

TRSHMLOG.
TRSHMLOGT

ge.c
atrshmlogjnipackage.o and -latrshmlog

Illustration 96: Build of the jni bridge for mingw

OK. We have no abnormality here. Simply as the rest. Its only 15 seconds this time.

And you can see we have the atrshmlogjni.dll this time in the resulting copy.

Testing the jni bridge for mingw

So now its time for a cmd with both path settings, one for the mingw bin path and one for the load
library. We have this in the start script, its this time a cmd.

EA Command Prompt |i”£|@

C:cygwinbd-homesatrsatrshmlogsjavasoraclenjdkl .8 .B8_182\src>start_package_log.cm
id

C:scyguwinbdshomesatrwatrshmlogs javasoraclesjdkl .8 . B_182~src>rem start the ATASHM
LOG demo

C:scyguwinb4shomesatrsatrshmlogs javasoraclesjdkl.8.8_182~src>SET LIBDIR=. de~atrs
oft/successorofoaksutilities~logging~atrshmlog-1lib

m

C:cygwinbd-homesatrsatrshmlogsjavasoraclenjdkl .8 .8_182%\src>*rem we use this tim
e the package version. so its with the classspath ~ package

C:scyguwinbdshomesatrsatrshmlogs javasoraclenjdkl .8 . B_182~src>rem the shared 1lib i
= also moved to the package dir here

C:scyguwinb4d-homesatrsatrshmlogs javasoraclesjdkl .8 .8_182%src>java —Djava.library.
path=./desatrsoft/successorofoaks/utilities/loggingsatrshmlog~1lib de.atrsoft.succ
essorofoak.utilities. logging.atrshmlog.ATRSHMLOGTest hallo welt

logging done. Times start 42033329751541 times end 42833329112259 return attach
iz B return urite iz 8@

C:scyguwinbdshomesatrsatrshmlogs javasoraclesnjdkl .8 . B_182xsrc>rem end of file

C:scyguinbdshomesatrsatrehmlogs javasoraclenjdkl . 8. 8_182%sprc> il

Illustration 97: Test of the jni bridge with vanilla java and cmd

OK. Seems it worked after all. No special things here.

As always, we check the converted result file. I leave the reader and convert stuff this time to the
reader (gag!).

, type C-h C-a.

Illustration 98: The resulting log

OK. We have a logging jni implementation for mingw, and there is only the stuff in mingw bin that
we need beside the created dll so far. I can live with that. If you need it different please contact me
and I will see what I can do for you. But for now that's the thing I have for you.

What are those numbers for ? Adjustment process ?

The vanilla module should do the job at least if you are in a simple program scenario. If you have
higher needs for performance, or you are simply in a high amount of threads or programs situation
the things have to be adjusted to that.

This is called the adjustment process.
So here we try to find out if we can do make things better in this case.

First we see how to find out if there are any needs. Then we check for our options.

Now we need to know how fast it is

The module itself is a simple logging approach when it comes to measure the speed. Simply put an
gettime in place, and then print out the clicks. Better the difference.

This way I found that the static (!) allocated memory buffers for the log were slow on fenster;plural
if they were not accessed before — a simple log made 3000 to 5000 clicks. When I was inside the
first memcopy got it and the second came with 10 clicks ...

So what can we get ?

First of all you have some numbers when you get the timings right from the atrshmlogdefect.
You can see the time for 100 gettime calls. Raw made with 100 copied macro calls.

Next you get 100 low level logs with a small payload.

Last the argv write 2, but that is a different story.

So you have a rough first time for the gettime and log. And its in the region of 40 click on my box
for the gettime (If you check the code you will see that a simple C function takes rough here 20
operations itself for the stack thing, the prefix coed and the return suffix code. So its more 10 to 20
click for the time itself. Could make it inline directly in the writes one day ...)

For the log a time of rough 100 clicks is OK.
The real cost come in for the transfers of the buffer. The problem is memcopy.
You can see the numbers when you convert a buffer.

Here for the sake of a proper discussion a run:

$ atrshmlogtest03 1 2048000 16
shm log check for c++ code and threads
start of threads.

dispatcher has count 1 and looptime 2048000
packages made

0 198423611

threads delivered futures 198423611 198423611
main 198467333

0.99978 1.00022

end of test.

I spare us for now snapshots.
Well, for starters.

The thing made 2048000 times a loop that makes a gettime, a loop of 16 times int++ for a volatile
operations — the compiler could else evtl do something against it — and then the next gettime and the
log.

Then the next iteration.
And it took 0,198 seconds (that's the German way, the , instead of a)

2 million logs in less than a blink of an eye, and still traffic on the process...

The reader did its job.

$ atrshmlogreaderd dl

shm log attach and loop write file.

logsystem version is 1.

directory is dl

files per_dir is 10000

stop via signal reader for pid 9999 with value 9999.
directory not found or not accessible 'dl'. Create it.
count of initial used fetchers is 8

count of initial used writes is 24

enter transfer loop

logging stopped by signal 9999 9999

logging done.

writer data : time 464597670 count 314 per use 1479610

That's a ssd below. An Intel 320 so we have good times for the 9 year old box with its sata II
interface.

We have a time of 1479610 clicks per write. So if we have the transfer times for the buffers we can
start some simple calculations.

The convert gives us the times:

shm log converter from file 'dl/0/atrshmlog p25812 t25823 f0.bin'
to file 'dl/0/atrshmlog p25812 t25823 f0.t

xt'.

id 3 acquiretime 780 pid 25812 tid 25823 slavetime
2308860 readertime 1087060 payloadsize 5

24280 shmbuffer 0 filenumber 0

shm log converter from file 'dl/0/atrshmlog p25812 t25823 fl.bin'
to file 'dl/0/atrshmlog p25812 t25823 fl.t

xt'.

id 4 acquiretime 300 pid 25812 tid 25823 slavetime
472620 readertime 780540 payloadsize 5

24280 shmbuffer 0 filenumber 1

shm log converter from file 'dl/0/atrshmlog p25812 t25823 f2.bin'
to file 'dl/0/atrshmlog p25812 t25823 f2.t
xt'.

OK. Now we have some numbers.

First we get the acquiretime.

780 clicks. Well that's a slow one for static buffers. Next is 300, more in the right direction.
For an dynamic you can easy get a 50000 ...

For the slavetime we get an awful 2308860 here. Bad. The next is 472620 , and this is still far from
the 200000 I get when its right. So much for same thing same time. You are far from it. You are in
the land of memcopy on real machines for half a MB buffers.

Next is the reader for its transfer — should be the same right ? Same thing and that stuff...

For the first its half the time (HM, better) but for the second its twice the time. OK, that's for our
first two here... later we get better times, but still the reader has a problem. So we have to ask if its
for having too many threads — after all the test03 did it only with one thread.

The payload size shows we use full buffers here. So we have to check for small transfer times if it it
simply a empty one.

The shmbuffer is the index in the area. This helps to detect if we have concurrent use of them —
numbers are changing — or only use one — numbers are the same for buffers.

Last is the file number, its also in the name but I have it separate.

Now let's see if we can make it better. We reduce the number of threads in the system.

$ export ATRSHMLOG FETCH COUNT=1

$ export ATRSHMLOG WRITE COUNT=2

$ atrshmlogreaderd dl

shm log attach and loop write file.

logsystem version is 1.

directory is dl

files per_dir is 10000

stop via signal reader for pid 9999 with value 9999.
directory not found or not accessible 'dl'. Create it.
count of initial used fetchers is 1

count of initial used writes is 2

enter transferloop

logging stopped by signal 9999 9999

logging done.

writer data : time 537103360 count 314 per use 1710520

So we got it this time with one fetcher and two writers — the write time is comparable.

Now the convert gives us

id 4 acquiretime 180 pid 27804 tid 27815 slavetime
168160 readertime 227460 payloadsize 5
24280 shmbuffer 0 filenumber 19

shm log converter from file 'dl/0/atrshmlog p27804 t27815 f20.bin'
to file 'dl/0/atrshmlog p27804 t27815 20

LJIxtt.

id 3 acquiretime 630 pid 27804 tid 27815 slavetime
159190 readertime 229290 payloadsize 5

24280 shmbuffer 0 filenumber 20

To be honest, it takes some buffers to come there, but now we are in the same league for the two.
So much for using too many threads.

On a box with only two real CPU cores its difficult to make such things. On a big one you can see
that the mt thing is needed when you get a high load. That's right for the slaves and the reader. But
for a two or four core box you can start with a one. That does the job.

If you have a permanent log and you need rough 200000 click per transfer the total time is 400000
click in the area. For the 16 buffers I use here that mean we can get through in 400000 click 16
buffers — a least in theory.

This would mean I have to write down in 2000000 clicks — that's the average for the reader to make
it for one buffer to write down — we have 5 times 16 buffers — that would be a need for 80 writers —
and they would have to do it nearly without interference for it or my reader would explode in some

seconds — even if I have 1024 buffers in place — there were 314 in just 0,198 secs ...

So much for the guys who want to log on a box with let's say 512 MB ram You are finished in
just barely one second. BUMM.

Back to reality.
If you do the usual program logging it will be more than OK to have a simple setup.

If you have a real high log load — lets say an 20 GB application server with round about a thousand
threads — that's different.

There is first the need for more buffers. Hopefully the thing makes good use of the turn off and stop
for threads. Or if it is one of the start many threads in a short time then kill them things — you get it.
You are out of memory for the thing in no time. And your box too.

For the reader its more a question to make it through the first seconds. If you have a reasonable fast
file system you can expect an average write in about 1500000 clicks. That's about 0,5 milliseconds.

If you create an amount of buffers for let's say the load of the test03 in the first second it would
mean to catch 1500 buffers in this second only. So you will likely need to raise the number of pre
allocated buffers. There is an ALLOC ADVANCE thing in the reader for it. Give it a 5 — wups,
that's alone 2.5 GB for the record — and make it real ram (it uses 1000 times the nuber f buffers ...).
Using the swap space or page file is out of the question here.

So this is the way we can use it out of the box.

Now we know how fast it is — can we make it faster ?

So you have it up and running and you have problems still to come up. Or your program is
crawling.

If you have control for your application and the module there are some options.
Before you start to do anything else you first have to find out what are your needs.
To do that a small statistic run can do the job. See below for the details.

After you have the statistics you can add info that is not known to the module for now.
How many threads do log at a time ?

Answer: NumberA.

How many threads do I start ?

Answer: NumberB.

How many of them need log buffers ?

Answer : NumberC.

How many buffers do I get back after the threads finish ?

Answer: NumberD.

With that info you can start.

A low throughput scenario

We start with a simple thing.
We have only partly logging. And its only a low traffic in the system.

When we check our program we see there is a small NumberA, perhaps only one . The mksh
example is such a thing. The test00 to test02 are those things, also the defect.

So you have a low number of threads. And your NumberB is practical 0 — no additional threads.
You do logging for the thread, so the Number C is equal to Number A.

For the last number its none , zero, 0 . You simply end the program, the buffers are moved to the
area by the cleanup. You do NOT give the buffers up after logging. Perhaps I should change that.

In this scenario we have no concern about the number of buffers in the active system. We start with
the statics and we likely never need more than the buffers for one thread. This is 2 in the default. So
we have 1 MB buffer memory in place for them. The rest is 31 MB and simply dead memory.

We do log, and we have for some of the programs that the run time is limited. So is the amount of
log.

For the one program that does run in principle an undetermined time — the mksh — we have to
accept the log can be undetermined too. For the others its limited to the amount of some entry's —
best is about some hundred — and they are small.

This is a lot info, and we even have not started a statistical run.

So when we now try to make it better we have found that there are an bunch of programs that can
live with the two log buffers completely.

OK. So we switch the slave off for them by setting the slave count to 0.

Next we can reduce the static allocated buffers. Set the define to 4 ,one reserve cannot hurt here ,
and change the static buffer initialization part.

This reduce start up time. And makes the memory footprint smaller. Less memory always ends up in
faster, so we do it.

After this we have to start and run the thing with a reader — for now its reader d.

We know there is a bunch of threads to fetch buffers. But only a count of one or eventually two
come in — so one thread would be enough. And a 0 is possible here . The reader make a final
cleanup in the area, so if you insist you can wait till the program is done and then simply get the
data from the area that's there in one final run.

Best is to simply do the program thing, and start the reader later. So there is no competition for the
CPU and no lock contention in the area at all. We use the area as a buffer then the time we are not
up with the reader.

Your program speed is now maximized. You get the log and this is done after the program has

ended.

Not what you expected, but its for real. Try not to slow down a one shoot thing by making infinite
loops in your mind.

Next is the mksh. Here we have an unlimited running.

A scenario for a long term running low throughput program

You have a long term runner.

Meaning you don't know how long it will take. But its a low through put one. Say less than a buffer
per second.

OK. We reduce again for the process the footprint by reducing the static buffers. We then try to
make it with one slave — that's the default. So we simply not set that in the environment.

We reduce the thread CPU load. Its save to slow it down in the loop in the wait part. Put 1000000 in
there. Its a run of the slave every milli. Perhaps even more.

So do that what will disturb the client as less as possible.

For the reader we have one fetcher. And we have one writer. That should do the job.

A scenario with low throughput and multiple threads

This time the program starts threads.

Its still only a low throughput. So we have again only one slave. The adjustment of the static buffers
cannot be done if you don't know the maximum thread number. So we leave this first. We have a
reader with one fetcher and one writer.

Now comes the new part compared with the former scenario. The threads are started and stopped.
So for logging threads its vital to make at the end an stop or you use the turn off.

If you don't do that you have a memory leak. And its a big one. One MB in default.

So your process should give up the logging in threads as soon as possible. And it should try to be
sure of the stop or turn off for the threads. After the thread has been stopped its too late. No more
access for the threads local possible, so no more cleanup for now.

A scenario with high throughput and small number of threads

This is a case for checking you have still enough buffers static. A statistic run should show no use of
the buffer allocation with dynamic memory. Or you check the id numbers — if they exceed the
number of static buffers its sure you have dynamic once in place. If you can do that adjust the static
buffer to cover your maximum.

Next is to check if you encounter many buffer waits.

This indicates you have a transfer problem. Check how many slaves are running. This should be a
reasonable number — about one slave for 16 threads is a good start if your threads log much.

You have to check how many buffers will be at the same time in the area.

If you have the numbers from the converter you can see the numbers of the used buffer in shared
memory. This is changing if you need more than one buffer at a time. If its not changing from
transfer to transfer you stay put. Not changing means that more or less one slave thread works at a
time, so you can reduce them and spare CPU time.

If you have more than one buffer in the area at the same time its time to raise the number of fetcher
in the reader. Start with two.

Same goes then for the writers. The ratio of time for a transfer to shared memory plus time for a
transfer into reader to average write for a buffer to the file system comes in.

You need enough writers to come up with the number of buffers your fetchers put in. Or you get a
bloating reader that can slow down and then your area is simply full — slaves encounter a wait till
the transfer can be done. Because the reader has a 1024 buffer queue for buffers this can be
undetected if you only do some logging, you need at least about some thousand till a shortage is
here a problem.

So you have a complete transport chain now and you must honor that.

Still most vital is the thread cleanup. You need to maintain a stable number of buffers. This is the
most important thing to do.

A scenario with very high throughput
You have high speed and high logging threads.

So you can get a throughput of number of area buffers in a time that is the sum of the time for copy
to area and time to copy to reader.

This is the theoretical max. No way to do it faster. So you raise the number of buffers, but this will
also raise the amount of memory used. And this is indeed a factor for the system speed — you have
more memory than the second level caches of the CPU will cover, and likely more the third level
cache support — so you slow down to conventional memory speed.

If you try to start more slaves be prepared it can only cost more CPU for you — they simply wait. So
the max should be half the number of buffers in the area. Same for the fetchers. If the time is
comparable to the time for the slaves use also half the number of buffers in the area — that's the
default for the reader anyway.

For the writers you need to make the same number of buffers you get in from the area now to the
file system. Take the average time for the write and you can calculate how many writes you have to
make parallel. And check this before you start — some file systems simply do not like parallel. And
some hardware don't like it too.

When you test realize that you do most things in the first time in memory — buffers for the file
system are cached and even disks have their caches and he reader has at least 1024 buffers in place..

So you have to test at least for some time to be sure — a minute in high load should do the job, so in
the second and third it should become realistic.

Raise the number of static buffers if you need it.

Now the statistics come in. Use them for at least some test runs — you will need that info.

If you encounter still high counts of buffer full waits — switch the most important for speed to the
discard strategy — its better to have a thread doing its job than waiting for logging in that scenario.

Statistics

So you have it done but still not sure its right for the adjustments.
OK. We have some kind of statistics. The so called counters.

The thing is in now. The most is in the process done by atomics. For the stuff that would slow down
the writes its thread local. We can get them from a buffer with the converter. Add a third argument
as filename. The number of the highest sequence is also now in on the output and filename. You get
the best statistic from the one with the highest sequence.

What can we get ?

First of all we get simple counter numbers. No timings. So you have to accept there is no log of the
log itself.

For the numbers most of them have to do with simple setting something — so you can check if you
made that. There is no count for the getter things.

Can be quite interesting if you are in a big system, have multiple developers and somewhere
someone decided to to a thing that kills you. And if you have not access to every bit of source — you
get it. See the statistics for a test run and see if you were hit by someone.

For example a set strategy process. You simply use the default — its wait — and someone switches
over to discard. That's it for you — you loose your log in a buffer full scenario.

See counter 75 and 76
Other things are the counts of errors.

If you use the simple way of life you do most things with the log without checking return codes.
That's OK for me. If you made it right it works and you don't have to check for every thing.

But from time to time you must be sure to be on the road, so you make a statistic run. See counters
25 or 26 for an example. If you encounter such things you can start to check for it. If you don't
check return codes you simply don't know till the statistics show it. OR see the safeguard corrupted
thing.

Have in mind that a log call can be faster than the java thing to make an enum from a return code —
so checking codes can be more expensive than do logging here. So statistics it is.

And then there are the real things — log discard, waits and these things.

If you are in a high load scenario you have to know if your configuration is good. So you need those
numbers.

The problem for now is to get them out. You need to call the get for it.

To analyze them I have a little helper. The script atrshmlogstat. You need the numbers in a special
format to use it. See the test03 for this kind of stuff.

And check the appendix for the thing. Its the best info I have for you for now.

When | change it, what then ?

After you have changed the module and it fits you have a simple question to answer — is that
enough for me in the future too ?

It can be that you never plan to update it, so then your answer is yes. No changes needed any more.

But if you have to live with updates — then this is at least a possibility you must take care of.

The Adjustment

We have the module in the vanilla version doing its job good. But if you need some different
behavior it can be you have to do more than simply use the environment settings.

So we have to discuss here if you have to change the code.

Changes in the first place in atrshmlog.h

You can get some things here.

Use of a different platform with special needs for example. You add the define, then switch the
others off.

You duplicate the codes and then set them different.
For example you use a clang on Linux, not the gcc.
So you have to adjust the inline stuff and the assembler. Most likely this is not the same.
Other things can be the use f a different threading. Switch from a posix pthread to a platform thing.
Plenty of things can be done in atrshmlog.h then.
There is:

* use of inline code

* the used thread model

* the use of get syscall if available

* the used real time clock time

* the nanosleep

* use of the tid model

* default timing function for the gettime

* some typedef stuff to cover system stuff like times

* helper types for pid, tid and such things

* all macro code — you can put something under cover in there if you need it

That is all in for the interface. So it makes a new module — even if you don't change the layout of
the area its eventually worth a new one.

Changes for internals

So you came on a thing I have not in for now.

Let's say you work on a critical one and need best performance. And you have a real big iron. If this
is an option — set a bigger buffer size and you minimize the overhead.

OK. You are now in the internals, its this time atrshmlog_internal.h.
You can change here a lot — and sometimes its not only here but also in the source then.
For a bigger buffer there is a define — simply use it.

If you have the opposite — for example your multiple core thing only support 256 k as second level
cache — reduce it.

Recompile and that's it.

You can do a lot of things here.

For starters:
* change the buffer size
* change the number of prealloced buffers
* change the shared memory access rights — if they are used
* change the default times for slaves and waits
* change the number of buffers in an dynamic allocate
* change the number of events
* change the name prefix and suffixes for the module
* change the ratio of clicktime and nanoseconds
* change the head size for the logging entry

* change the structs (oha. But don't forget to know what you do in the first place...)

So you have this with only doing it here — with the exception of the head size and the count of static
buffers. For them you will need the code changes too.

Changes for the code
You have needs that go beyond the define stuff in the headers.

Well, this can happen.

Let's say you want to have the thread statistics before I can do it.
So you change the buffers and the thread local to hold them.
Then you add code to use them in the impls files.

You change the reader to transfer them — after all you have round about 300 bytes in the header left
— or use a special stat buffer.

You change the converter and then you get the statistics. Or make it to the area and have some new
dumper tool ...

You have to change the code.

And yes, you can. Its all open source and you are free to do it. Simply fire up your favorite text
editor, and then make it to your own module.

I am not against doing that.
It start to turn out that the trouble is if it not works or — worse — partly don't work.

This is the thing you have to keep in mind : we live in the world of atomics, fences and memory
model order.

For the rest its plain C code, so you should have no problems if you have done some development.
After all T have made some documentation about it, so you can dive in and check for it with this
help.

Also a post card for me is an option. Pack your distro — please no more than 15 MB as zipped file —
and sent it to me. If you can do — drop the doc and mksh stuff...

So in doubt split the tar and sent me the thing in multiple mails.

What would be first target — beside the stuff that must be maintained if you change the defines ?
First candidate is a converter that fits your needs.

Second a reader that transports different things.

Next is code to make something happen in the module you need there — for example a dynamic start
of threads by a writer signal (that's on my list, but its not top priority ...).

You can change the code. Add new files in the impls.

Local changes for your own system

Now you have made the changes — what's next ?

First there is a good change you have done it only for your own. So you do not to plan to give them
to others for now.

Then you should prepare for the unthinkable — you have to upgrade some time to a new version.

Can happen — and yes, if worse you have simply got that changed bastard of hacks from your
former colleague and now are confronted with it .

What to do ?

On most platforms you have a system that can make patches. That's a thing of a diff and the patch
program (see a Linux system for that).

You build a patch file — this is easy.

Then you test it — run against the version that has been altered. Then check its identical to the
version you have now to support.

Next is to run the patch against the new one.

I had only one file for the implementation in the beginning. Now you have a crowded impls
directory. For the path tool this is ideal — no lot of hungs and mismatches — simply one or two lines
here and there ...

By the way : if you do this with diff and patch — don't make your life harder than you need — don't
try to change things you don't have to like

* comments
* simple variable names
* indentations

This is simply counterproductive here. Use the original source and change it — yes, but only what
you need.

Don't start to duplicate by having a commented former line in. That's a bad thing. Use your version
control thing instead.

You should also try to make clean line changes — replace one, delete one and add one for one thing.
Combining things only hurts when you have to change them again.

And one thing last : don't forget to change the version number if you change the layout in the area
and buffers. Mixing multiple versions on a box should always lead to a run time error in attach at
best.

Patches

Did I say patches in the former ?
Now its time for patches from me.
I have to make versions of it.

Its clear that sometimes its not the layout affected, so its perhaps only a glitch or a minor change
for some new stuff.

Then it comes to a patch version.
You can get the new version — OK, that's the best — or a patch if your build environment supports it.

With a patch you can go to the new version. And if you have made patches then chances are you
don't interfere with the patch and you have simply the patch in without doing yours work again.

So patches will be there.

You will get a patch number — so you can see it in the code and if you have to check from the
compiled module too.

Making patches can involve a minor number switch. Then you have new functionality, but still the
old interface and binary layout.

For the rest its a patch to go from one version to the next.

Wouldn't it be nice to get this, too ?

OK. So you have the shiny new thing and think you will have to put in in the light so others can use
it too.

Then its time to make a distro — please no files with more than 15 MB size — split if needed to
different mails.

And sent this to me.
I will see what I can do.

If you have a patch that's fine with me. I use the Linux diff and patch tool, so you should sent this or
I need your patch tool too.

I have a little catalog here. Please be prepared to make the answers in your proposal — I need it at
least in the mail.

Does it
* work?
* have an impact for other functions — eventually a slow down ?

* need permanent maintenance ?

Stuff like that. A simple list is sufficient. And a can even accept the maintenance thing if its GOOD.

The glory details

OK. You now have made the module, tested it, used it, made even the layers, made the adjustments
and have everything in place for the use.

Now you have the luxury of some spare time and you want to know how it works. And you are for
real this time.

So I try to give some info about the how it is done and the why it is done here.
We will first use the theory approach.
Then comes some more or less understandable explenation for the non C guys.

At last we dive into the C module and see the things for yourself.

Theory of the module

We use here an analogy. It is far from perfect, but you will understand the most after that.
Imagine a house with a balcony at the first floor.

At the garden there is a small pool of water.

Its for some party thing and there are people in the garden and in the house.

Somebody screams, then something crashes. Again screams.

“Fire ! Fire !”.

There are some buckets around, and the guys in the garden run to the pool — there is plenty of space
around and some guys start to put buckets in the pool, fill them up and then put them at a side of
them.

Others take the full buckets and run to the balcony.
In between the guys at the pool grab the next empty bucket and fill again.
If you understood this — welcome to the client part of the log.

We use so called alternate buffers for the log. They are the buckets in the analogy. You fill them up
with the log info.

The bucket has a maximum size. So when it is full you need to wait for it to return empty. Or use
another one. If you are out of buckets — well you can ignore it, or wait....

The guys at the pool are your threads. They all use their own buckets. No one uses a bucket together
with another one. So most of the time you work in logging in the thread and without any interaction
with others.

Now to the guys that transport the buckets to the balcony.

This is the so called slave thing. Its realized a bit different, but you can think of it in this way. A
thing to simply transport the full buffer to the shared memory. In the analogy the bucket to the
balcony and then to the guy that stands there and grabs it.

Now we switch to the balcony thing.

There are standing some guys inside of it. They grab the bucket from the guy who takes it to them.
Then they turn around and put it on the floor of the balcony entry. There is just enough space to do
it with one bucket for each (well, give it a try and think of big buckets here...).

Inside the house the people have to grab the bucket from the place, then move it to the fire and then
do the thing.

In between the guys at the balcony move bucket for bucket in.

That's the transfer into the area. There is a limited number of buffers you make. The same thing for
guys that can work on the balcony. If the place is limited you can only put a realistic number on it

or the thing will slow down itself.

So far we have the second part of the slave thing here. It transports the buffer into one of the area
buffers.

To do this the area buffer must be free — imagine in the analogy that there is place for one bucket
behind the guy on the balcony, so he simply cannot put multiple buckets in without first having to
wait the place is free again.

In reality we can put the buffer at any place in the area as far as its empty.

Now comes the last thing. The buckets are transported inside the house. That's the thing we call the
reader in the system — we transport the buffers there from the shared memory into the reader
address space and then do what we have to do with them. So we clean the buffer in the area after the
transport is done the first part of the way — we do not wait for it to reach its destination, its enough
to have the space free for the next buffer.

The guys who transport the buckets in the house to the fire are a bit slower then the guys that simply
take the buckets at the balcony entry — which is a small door or so - and then give it to the inside

guys.

So in our system we have the fetchers who grab a full buffer in the area and transfer them in the
process address space on a list. Then they free the area buffer for the next transfer by setting them
back on the free list in the area.

OK, sometimes an analogy does not match exactly, but for now it works.
Last thing is the guy who took the bucket and runs to the fire and puts it down.

These are the writers in the reader. They take the next available buffer from the readers list of full
buffers and writes it down to the file system.

Here is where our analogy ends — the buckets simply dematerialize and after that rematerialize at
the pool. So much for a computers way to copy data.

What happens when the fire is stopped ?
Well, first of all all guys at the pool stop — but they put the half full buckets at least behind them.

Next is that the guys start to clean up the place. Somebody will put any bucket to a place where it is
needed and then the rest of the water is used.

In our system that is the job of the cleanup. It checks for all buffers and puts the not cleaned up in
the area at last in program end. So nothing is lost in a regular shutdown of the program.

On the balcony the last buckets are moved inside, then the guys there stop. So again the things are
moved in.

For the transport in the house the things are then moved where they are needed. Again in the
shutdown of the program there is a cleanup so any already fetched buffer is then written down to the
file system. So nothing is lost here, too.

OK. That was for the basics. Nothing so far from C or Java or anything for a programmer.

Still we can get some insides from the analogy.
First of all — there is no unlimited in this game. We have to accept limits.
First we have the fact that a bucket cannot be too big — no one could handle it then.

Our buffers are limited. And its a hard size limit in the code. I choose a thing that works nice for a
small number of threads to do things. It fits at least in the second level cache of modern CPU's and
so its fast to be moved. Anything bigger and you have to test it out.

Next is the number of guys at the balcony — the space is limited. So is the number of buffers in the
area. If you think of a slave as a transfer of buffer from the list of full buffers you simply see that it
makes no sense to have more slaves than buffers in the area — they simply will start to wait to do the
job if the load is high.

Next is the fact that we accept only one bucket for every guy on the balcony inside. So there is a
limit too, and its the number of buffers in the area again. Having more fetchers to get buffers from
the area is simply not useful, so this is again a simple thing we have to accept.

If you think of it — if they both need the same time for their thing, the place for a bucket is somehow
used half the time from the balcony guy and half from the guy that fetches the bucket — so in
practice already half the number of slaves and fetchers will cover a 100 % use of the area — any
more and one of them starts to blockade others.

Because the operations are similar, there is in theory a one to one for the two. In reality it depends
on the speed of the system as a whole and the additional write stuff for the readers what timings you
get.

Another thing. Everybody has to take care not to do one of two things: working without respect for
the other or waiting too long if there is the change to do the thing.

So we have to synchronize the work at any place that the guys have to share a common thing.

This is done by using some internal handshaking protocols based on flags and by using some small
time wait functions that use reasonable times for waiting. So the buffers cannot be used
concurrently and the fact that one is using a common thing results in a short time wait for the others
involved.

OK. If we have enough guys to do the thing — we have the maximum throughput of water.

Fill the bucket, transfer it to the balcony, put it through and in the end transfer its in the same time
from the balcony inside the house. Of course the things in the house have to come up or we simply
transport much more buckets than can be used in that time.

So in our system we have also to respect the time we need for the write down of the buffer into the
file system. And we have to use as many writers as needed to come up with the fetchers and slaves.

That's for now with the programmer independent stuff. Now we get into more technical things.

The way to log in shared memory - or how to circumvent it

When we try to understand the way of logging that is implemented we have to start round about
four months after the beginning.

That time I had a nice running logging for the single thread system mksh, but it was not the best in
case of high speed nonsense things like a raw counter loop.

And I had already started some multi threading things because it was clear the thing would make it
after to the shell to a java logging in application server environments.

HM. Bad thing. Even the single thread mksh told me I was wrong with all the knowledge of the past
25 years in UNIX ipc....

The timing was at best clumsy. Real time marks with about 500 NS to make them. The write of a
log was fast, but I had those mutex things all around and when I tried to scale up — more or less a
blockade from everyone against everyone else.

So I stopped twisting some simple C transfer things and made some bruit force experiments with
the shared memory use — random, sequential, cross bar, interleaving

Nothing helped.

It was time to take a break.

Lean back, close your eyes, and start to think over.

Question: What is the best way to log the data ?

Answer: I put it with highest speed into a buffer that I control and nobody else.
Question: What happens when the thing is full ?

Answer: I put it on a full list and go on with my work.

Question: What when my buffer is on the full list and I need to log ?

Answer: Use two buffers alternatingly.

Well, that helped.

Make a small dummy and see how fast you can put log info in a local buffer.
Next, how to make a list for buffers so I could put these on the list when full and use the others.

The things began to work again. I could do rough 16000 log entries without interfering with anyone.
Only the timing thing was bad.

I knew from my time at the University of Cologne how super computers did the timing — with a
special register thing called a tick counter.

So I gave it a try, and bingo. The question of making time was reduced to 20 nanoseconds and I had
no longer a system call.

Making a multithreaded logging with a support thread is not so tricky, if you do the list stuff by the
book. So I took examples from the net for the posix way of live. My audience was in these days the
posix and C99 community.

When I came to the atomics it was a bit too early — I had read about them in the working of ISO
C11 and C++11 stuff, but I had no practice that days. So I switched on that things and started to
replace the posix mutex and condition variable stuff.

After some weeks of more or less nice try's I realized that this was serious stuff — but there was no
real help in place, no article on the net and worse no book about the C11 way.

I checked the PDF about multithreading in ¢ from the Linux kernel guys, but that did things
different.

So I made a move to Anthony Williams book for C++ and checked the stuff.

After having a rough time in making slow progress I could start to remove more and more of the not
needed things — and I had a lot of them — and finally got the atomics things right in place.

Now the synchronization was smooth, and I had at least no longer the need for posix in that area. I
began to make progress also for the area synchronization. Now the multithread reader began to
make sense.

My calculations for throughput and parallelism came near the reality for my big boxes — two AMD
Opteron Boxes with 24 and 32 cores and plenty of ram to be used for Oracle Databases and big
application servers in development.

To have a scaling by more than 90 % was still tough, but possible as long as I had the number of
CPU's in place. Sad to say that some operations simply took three times longer than my box — a
P9600 at 2,6 GHz and 8 GB notebook from 2009. So much for AMD Servers today.

So to summarize this: doing logging into the area directly is the first thing, but it will end up in
more or less heavy interaction of the threads via the synchronization stuff. Forget about this.

Next you have to accept is that logging in the program has to be made on thread base — no central
logger stuff — same thing as for the area. Forget a central buffer system.

Next is that you will need fast timings — and I mean here for a log in nanosecond league no more
than 50 nanos in the first place. That's already dangerous near the 70 nanos I need for the log entry
to make with a 20 byte payload — if the buffer is not full.

And of course you need more than one buffer per thread. At best two. You have to accept that the
buffer has to be moved by somebody else — not your working thread — and that takes easy 200000 to
700000 CPU ticks for the half MB I use. You can't wait that time or do it by the working thread
itself. You NEED slave threads to do that move and the alternate buffer to log on in that time.

OK. So far we are now again on course, and that is exactly what this log is. We are still on course
now for the theoretical best log possible. Any thing different needs at last a technological base for
the memory transfers — perhaps I switch to transactional memory later on, but for now we use only
the buffer and shared memory thing here. So we have to move the log buffer after it is full.

For the list stuff — its a lie. Today I use an adaptation of the stack atomics demo of Williams at all

places. Its after all not of concern when a buffer arrives the file system, so I can live with an upside
down order in writings and moves all over the place. Important is that the stuff works and is fast
enough to come up with the 60 to 70 nanos a write takes — forget using condition variables or
mutex's here. We need synchronizations in the 10 to 20 nanos region.

So after all I say, its clear that we MUST end up with this design. And for the details it can be made
better, but for the design I have no alternative.

Points:
* We have to log in internal buffers only our thread uses.
* We have to log to multiple buffers in a way we are not stopped by full buffers.
* We need some background thread to do the real transfer from buffer to shared memory.
* We need a fast as possible timing function.

* We need as low as possible the cost of synchronization and if possible no blockade.

That's all for the moment. The rest will come clear if you check the implementations.
Next we have to clear our understanding of the atomics and the memory model.

So I use an analogy here, that will do the job and we don't have to check specs of a CPU vendor for
the stuff.

Cindy's classroom

We enter Cindy classroom. She is a teacher at a school I have forgot the name for now.

There is her desk near the entrance, the table in her back, and then the rows of tables start and line
up till its the end of the room.

Not very many, about 20 children or so.

The first row is desk by desk, the next have a small passage so the child's can reach the desk
without having to go parallel. Only for the entrance to pass, go aside to the end, make it to the last
row and go back between the desks in the column.

Well that's a bid odd first, but let it be for the time a fact. Its normally not the first row dense closed,
but here it is.

First day of a new class, and so she puts some sheets on the desks.
The children arrive and the first thing after good morning is a simple task.

Write down ten numbers on the sheets for the first row guys. Put your name on it too. Number them
from one to ten.

Last row get the task to ask for a desk and a number by the index and the thing is then copied on a
sheet and the children have to put the sheet to the right desk in a shortest distance way through the
lines. No crossing, no paper planes and no snowball things allowed.

After the things are back the first row has to announce the results and Cindy checks them.
Everything is OK, and for today the class closed.
Second day.

This time the game was changed by Cindy. All children in the last row asked one by one for the
numbers, and the in between had to make as few transportation as possible, its now n time. So they
started to combine desk and number combinations, and after the last row did the job the things came
back.

This time there was a surprise.

Cindy : “Well, this is odd. Paul, can you explain the 56 here ?”

Paul took his notes about the numbers he had made and — it was right — he really got them.
Cindy: “HM, Mark, can you give me your numbers ?”

And so Cindy started to write down at the table the numbers and the flow of them.

After the third she came to Sally's notes.

Cindy: “I'm a bit puzzled — why did you gave Bob's 37 in here ?”

Sally: “I got Mikes result and there was the 37 .”

Cindy : “Oh, that was a bit unexpected by me — you didn't wait till it was given back to you from
the second row ?”

Sally : “No, of course not. I gave him the number as fast as I could — this was after all what we was
told to do !”

Cindy : “Ah, I see, for now its my problem then.”
And again the class was closed.
Afternoon this day:

Cindy went to Tom in the corner of the teachers room. Tom was the oldest of the teachers, and he
had the most reputation when it came to giving support. She told him her problem with the class
and the way they did the thing. Tom blinked once after his glasses and said : “ Come.”

He went with her to the second floor. In the teachers room they met Tony, the science guy.
Cindy told him the thing.

Tony: “ Oh, nice, seems you have a cache consistency problem.”

Cindy : “ A what ?”

Tony : “Same thing as for our today computers. You need rules that the children have to obey for
the transport and the age of the calculated numbers or you will be lost.”

Cindy :“?”

Tony: “ Let's start by this. You name from the last two desks one time the first desk first number...”
Cindy: “ That's Tim's.”

Tony :” .. ah jepp, Tim. And then the second desk first one too.”

Cindy: “OK, Tim first and Mike first.”

Tony: “Good, then the second desk first again, and the third desk first.”

Cindy: “HM, can we make a picture ?”

Tony: “OK. I will do it.”

And the picture was made.

Tony: “So we start here with Tim first, a 12, Mike first a 23 and Bruce firsta 7.”

Tony: “Now we make the sheets her and route them to the desks of Hilda and Marian.”
Tony : “Hilda calculates the new 35 for Mike, and for Tim.”

Tony: “And Marian does the 30 for Mike and Bruce.”

Tony: “So far so good — clear ?”

Cindy: “Sure. But what ...”

Tony : “Wait. For now we have made copies of the numbers, and there is nothing to give any
number a preference over others, so they are made equal. Now we enter the caching game. We route
them back and someone wants to calculate with Mike's number.”

Cindy: “But I never .. OH. There are now two of them...”

Tony: “Yes. You never told them to do it, but they simply routed the 35 and 30 directly back. And
worse the original is still in place.”

Tony: “And now Denise and Theresa did the calculations and you got 42 and 68.”
Cindy: “So the problem was that they didn't wait for the numbers getting back to the first row.”

Tony : “Exactly. When they wait its a lot of speed they loose, so they tried to do the best to make it
as fast as possible. And so you end up in calculations that are made on the intermediate results, not
the originals in the first row. That's what we call the caching problem.”

Cindy: “OK, now I see that. What's the solution ?”

Tony: “To make a long story short : everything you like from an announcement to all to a grin and
ignore it.”

Cindy : “WHAT ? Really ?”

Tony: “Yes. The computer vendors have made different solutions, and this is one of their keys in
business to make it better then their competitors. Or at least they say so after making a test drive
looking good for them.”

Cindy: “Any simple and not so simple example ?”

Tony: “For starters: the announcement. Every time a child needs a number it announces that and
every child having it names the number and its time when it was made.”

Cindy: “So I need now the time too?”

Tony: “ Yes. No way without it. The youngest result wins. All have to replace their result with the
youngest one and the show goes on.”

Cindy: “That will give a lot of noise ...”

Tony: “ Yes. And so it will do the job, but it will be a slow and rough approach. But it works. Next
is the buddy's go alone thing. You have to calculate for the desk column only. So no numbers can go
from column to column, only in the first row its allowed to change a column.”

Cindy:” Let's see ah, I see now.”
Tony: “That's right. Its a bit better and you do not have the same problem in the column.”
Cindy: “But still when I come to this column here and that there I go wrong.”

Tony: “ Yes, and you can still have another problem, that's the cache line buddy's. To make that you
need to use a second number together with the first. Then you make some calculation for the second
and ask after that in two different columns for it. After you have copied them also with calculations

for the first number things get pretty rough.”

Cindy: “But that's again ... wrong.”

Tony: “No, its two times right but from different points of view. So you have again a time and
compare thing to help you, but this time its the whole group of numbers on a sheet. That's the cache
line.”

Cindy: “OK. I see where this ends. I will never get the numbers right if I don't give strict orders
how to handle the order of things.”

Tony: “Exactly. You need at least a time and a clear rule how to handle the thing for the desk itself.
Then you can go down the desks in the room and solve it in one or the other way. At the end you
come up with a bunch of rules and that will determine the results. “

Cindy: “OK, That's enough. I have to start in five minutes and must go now.”
On the way she began to make the rules for the third day.

Third day:

And the class got the correct results.

End of the analogy.

Back to work

So we need to have cache lines in mind. Having numbers in a block of memory that is moved from
cache to cache inside the CPU. And for different levels of caches. And pages. Moved from third or
even fourth level caches to others.

And cross bar and numa architectures. And store queues for delivering newest values ...
Oh boy.

Now we have to enter the multithread and multi processor game, and the only thing that helps it to
make use of the new C11 and C++11 memory model thing.

Anything before is at best dependent for the platform in use and a black art of programming only
told in classes that seemed never reached the light.

We start with the memory model.

Same for both worlds. There is a set of rules to handle that inside a program — and that means
strictly that we have no ground if we leave the program and do the shared memory thing. But at
least for my box it works and for my big once too. So I think its at least save on all posix systems
with the Intel architecture.

We have to accept that the memory model has two ways to handle things.

First is to play safe. Use the consistency model and that its. Any intermediates inside the program
memory will synchronize before you use them, and that's independent from your platform.

Second way it to use the release, acquire and consume relationships.

To make it short, the module does that second thing. All over the place you will find the acquire and
release things. And some consumes.

All is tested. In the beginning I found the need for fences — the term is sometimes known as
memory barrier — and did that too. But in the end I got the dependency's right and the release and
acquire synchronized as expected after the things Williams told me. Good.

So I removed the fences, but then I realized that I could have at least problem on platforms not
doing it like the Intels and AMD's. So I did make a compromise : having the fence still in but also a
flag to ignore it in the default version of the module. Later on a getter and setter. So you can switch
in theory on a power or sparc or alpha and check for the thing. If you need them you switch the
fences on. When it works then change the default settings in the module and make this with a
platform define depending on the platform — and sent me a post card with it, I will integrate it then.

The other thing was the atomics stuff.

After playing with the stack example and checking for the queue I switched to the stack. Its simple
and if you do it by the book you end in a fast and simple construct for the pop and push operations.
The rest is simply to decide how many of that things are needed and be happy if they work.

The queue has a bit better performance in case you have permanent concurrency, but this is
normally not the case for the module — we simply do seldom the things that can hurt, and we have
nano sleep all over the place, so chances are slim that we really hit another thread here — but its

done and will work then. So much for the theory.
OK. So we have now atomics.

That gave an unseen draw back: In C and C++ the things work the same and the C implementation
could have been the backbone here — but it didn't. So I had in my interface and its basic structure
now a construct that had the same name and worked different for C and C++. Worse the signatures
were different too. The C++ compile failed.

So I moved everything to the internal header. Cleared every use of an area struct and made void *
intermediates.

Now the C++ does simply not know the layout of the C structs, and I can live with that.
Still plan a C++ version in one of the next versions to support those platforms not using C11....
OK.

You can check the internet, I suggest you take cppreference.com and see for the atomics yourself.
For the fences its easier in practice if you use Williams. The way the committee tried to explain it is
at least not very transparent.

After having done at least two versions where the things really went wrong even on Intel and AMD
I can simply say its a good thing to have it work now. Don't spoil it if you try to use a new platform.

So after the basic architecture became working on real programs and even did it on the shared
memory it was time to start the java layer.

This is perhaps a bit odd, but for the C module I see that we can use it in this way with our
programs, but for the java module I suspect we will have still some changes here.

The thing is a full fletched layer, meaning I didn't left anything behind. Even added two helpers that
you don't need in the C world to access the memory of the area manually.

OK. For this thing you have simply to check the documentation and you will find that it is a more or
less one to one use of the C module function. So only the simplest thing that was needed from the
java side was put in — the creation of new Strings for the returns of strings from the environment.
All things else are made with the need of speed. No copy where I could come up with a different
thing. In the end its a simple adaptation, and it took less than a week to become the version I have
now.

There was some flow back of course. First the thing to circumvent jni calls at all cost.

The write became an internal fetch for the time. That covers most uses, the Point in Time and the
Interval in time. Sometimes its needed to different timings and then decide, but if that is not the case
you can now reduce the number of jni in Point in time to one and to two in Interval in time.

The other thing was the control over thread thing.

First I had only a few thread specific things and they were only internals. Now I had functions to
inspect the thread for its internals and to stop, flush and turn off of them. And a bunch off functions
to control that.

HM, makes the layer a bit more usable in the big run. So I accepted both and made the things in the
C module and then in the layer.

After some silly playing I even did the things to make it a full fledged replacement — the create, the
delete, the init and cleanup. Also the reads .

So now we have the java way to do things too — if somebody will do the coding for the support
programs. At least a converter would be nice — the C version can handle the java string thing, but
only partly, I would say at best its ill.

Back to the layer. Beside the flow back it gave me chance to check for the runtime dependancy and
it was OK in Linux, but for fenster;plural things again got bad. Cygwin didn't make it, so the mingw
port was needed. And I did it in three days. Its a bit more clumsy, and I doubt the timing will be nice
with all that problems, but its at least the best we have — there is no other thing that works for now.

For a native port we still need first to switch to C++ - there is simply no support for C in the world
of Redmond's thinking.

So for now I have set this on the list, but other things come first.

A word about fences - or should | say memory barriers ?
Life is a bitch.

You just got it through the compiler, then you make a simple test run and all is fine.
Then you take a test03 and make a simple single thread run. All OK.

Then a test for 4 to 8 threads.

The converter blows off. BANG.

Whats happening ?

The problem was persistent, so I had to check it.

First I ran into the fact that the converter was right. The careful made printf stuff gave me false
numbers. Was the first part of a buffer. The rest was clean.

Next i checked the bin file — after all it was the first part — and bingo. The thing was corrupt.

Next was to check the reader. Again it was corrupt — from the moment I got it from the area.

That was bad. No magic sim sala bim to make it fixed. The thing happened inside the program that
was logging.

At least from my point of view that day. Now I am not so sure, there is at least a synchronization
issue possible for the fenster;plural if you play games with some flags . Its an OPTIMIZATION
from the msdn web side to make the transfer from different program attached to an mapped file —
well, inconsistent if you want ... Never will understand what that optimization brings if your shared
memory thing is inconsistent. But that's the way managers seem to think in Redmond. Sell shit and
call it an optimization...

So I checked next the logging itself. No error. Correct data till the buffer was dispatched.
Next I checked the slave — still correct in the buffer ...

And bang. A small check sum test made it clear, I had a different content.

This was a clear problem of the synchronization between threads.

As always I have buy'd the ISO PDF files. So I spent every three to five years about 600 bucks on
the PDF files. I checked them carefully and found the fences for this kind of problem a solution.
Strange was after I had read the thing that they had to be combined with a atomic operation. But
that's the ISO committee thing. For Williams and his book things were different. Its possible to use
them stand alone. Well, so much for committee work — did I already mention that Williams was the
member for the whole multithread thing in the C++ 11 committee ?

OK. I tried it the ISO way and found it worked. So I had my first fence in place .

Now its time to say that the thing is better known as an memory barrier. It is some kind of fence too.
It triggers in last consequence an synchronization for the memory you have written or will read.

So I still cannot follow the ISO way, but for now I will simply try to use them in the way both
describe it — even if I don't have the atomic in place.

When the module evolved I could reduce that stuff. Careful reading for Williams and transforming
the C++ view of things to C11 leaded to a fence free system.

That's the good news: On my Intel and AMD box it can be made - nearly — without them.

Nearly — if I try something special it could be needed even here — so much for the low level thing,
the lfence and that stuff in the Intel mnemonics web side stuff....

OK. So I am lucky for now not to use the set of operations that need them even in Intel land.
This in mind I decided to check for others and found that they indeed need the stuff.
Bad news. When I switch to let's say Power the game is reset.

So I did not remove them. I made for every fence — sometimes for some of them that are used in
correspondence — a flag switch.

So its possible to switch them on if you need the, and I honestly don't know if this will be the case.
Have for now only the Intel and AMD stuff so I can't speak for MIPS, Alpha, Power, Sparc or ARM
now.

So here you get the now 13 fences . I say were it is — you could grep of course — and which could be
a symptom. Then its up to you to try it in case you have trouble.

Why not on in the first place ? Well, its easy. You will encounter heavy memory synchronization if
you switch them on eventually. And this can slow down a system dramatically.

For an impression: If you synchronize numa regions in an AMD box by the bios for may servers
and try to make a super big — more than the numa region size — Oracle DB instance and do heavy
insert stuff the thing can slow down to rough 1/ 30 of a one CPU system on one region. So much
for dumhead administrators with no clue of hardware...

Be warned. If you don't need them — switch them off.

And here it comes.

Fence 1
atrshmlog_dispatch_buffer

Symptom:
Your log buffer is inconsistent in the slave thread.

The list does not work.

Fence 2

atrshmlog_write(, 1 and 2

Symptom:

The log buffer is filled incorrect for some entries.

Fence 3

atrshmlog_read

Symptom:

The log is OK in the slave thread but your reader get a wrong check sum.

Fence 4

atrshmlog_read_fetch

Symptom:

The log is OK in the slave thread but your reader get a wrong check sum.

Fence 5

atrshmlog_transfer_mem_to_shm

Symptom:

The log is OK in the thread, the log in the area is corrupt.

Fence 6

atrshmlog_f_list_buffer_slave_proc

Symptom:
The buffer is OK in the thread, but corrupted in the slave.

Fence 7

atrshmlog_f_list_buffer_slave_proc

Symptom:

The buffer is not empty in the thread, but was emptied I the slave.

Fence 8

atrshmlog_alloc

Symptom:

Your allocated buffers seem not to be OK in the thread.
Fence 9
atrshmlog_init_thread_local

Symptom:

You area values are incorrect.

Fence 10

atrshmlog_exit_cleanup

Symptom:

The cleanup does not deliver all buffers.

Fence 11

atrshmlog_cleanup_locks

Symptom:

Your resources are not freed.

Fence 12

atrshmlog_init_shm_log

Symptom:

A fresh initialized area is still inconsistent in a following verify from another program.

Fence 13
atrshmlog_turn_logging_off

Symptom:

The tread you turned off still is running more than expected.

There are some fences in the readers. I simply leave them in.

For the 13 fences above its save to switch them on that are not in the logging functions. This will
slow down, but if you have a sync every 5 to 10 thousand logs its not so dramatic. IF its in the write
its different. Switch those on and make some tests if you really need them.

And now for the gallery — the C module way

OK. Now we are alone and we can speak from C programmer to C programmer.
This means no more hold back.

We will inspect the thing and have my short info about it. So you can decide for yourself if you can
use it this way.

We start with the header.

Switch to a BASEDIR/src and start the favorite editor. Load the atrshmlog.h and we simply move
from thing to thing.

The usual comments things. Then in line 57 the start for the platform defines.

I use four things of info her. The OS, the major architecture, some minor stuff if there and the
compiler.

So we can support multiple compilers. And indeed we have the cygwin and its cross compiler for
mingw.

For now the number of platforms is small at best. But I start next week at least the BSD and Linux
path and then we should have at least a BSD in here.

After the last platform we enter the LEVEL. I feel its a good thing if the module will get more and
more functionality, but for now its only there to make the header a bit less dependent of the stdio.h
header.

Then we get the inlineing. That's a thing you have to think about. You use inlineing not only for the
C but also for the C++ compiler. So if you are lucky you can use it here. If your C++ complains
about it you have to switch off.

For now I inline the time getter functions. That's a bit of a start, but no big ones after all. So the
effect is small, but you have still the choice.

The next is the threading. It is set up to use the platform as the major steering info, but you can set it
there to the thing you need. Its possible a thing for the future, for now the things are simply set by
the platform.

After the Linux thing again for getting the syscall.

Then we have the clocks.

For the real time clock its the best I can do. So the platform is again in lead here.
Next the nano sleep.

That's a disaster for the guys for fenster;plural. See the internet for the things. Only millisecond.
Period.

Then the thread id. OK. Linux is lucky here to have at least the syscall. The rest is the usual, take
the posix and be happy. Mingw has of course its own.

I don't know if that is a problem, at least for the logging the tid is used as additional info for the
whole buffer, not the entry. Hope we have no thread id mutation anywhere.

So at last the timing functions, and some macro. If your platform supports a better one you can
change it.

First the idea to have it capsuled seems to be a good idea, but then the timing made it clear to have
it more or less directly in a macro. So for now I have still the get_clocktime here, but it is on the list
of not needed features for me.

So we hit now the one and only include I need.

Stdint.h is for the basic types here. A 32 bit int, a 64 bit uint and perhaps a signed char or 8 bit
signed int. I use the signed char for now.

That's all for it. All other things are expressed in int for the interface or a void*. All others are done
in the int32 and the unit types.

What follows re the basic types. I use here some typedef's, could made defines but I think we can
use the typedef's here. So its the bunch of types we need.

Not much :

* atrshmlog_time_seconds_t
The seconds of a time stamp.

* atrshmlog_time_nanoseconds_t
The nanoseconds.

* atrshmlog_internal_time_t
The real time helper.

e atrshmlog_time_t
The click time.

e atrshmlog_pid_t
The pid — and yes, the IBM has already made it in 64 bit land.

* atrshmlog_tid_t
The tid, also in 64 bit land.

* atrshmlog_int32_t
Our standard int type.

* atrshmlog_event_t

The event flag — 8 bits are enough for now.
e atrshmlog_ret_t

Our return type, again the int of the system.

Next we start to use them.

We have the event lock pointer, that is used in macro stuff. So I have to know it here.
Then the logging for the process flag, again needed for the macro stuff.

One last time the clock id — perhaps we get rid of that soon.

Now we get some nice enum stuff. The statistics counter, the error codes and the strategy.

For statistics its easy. Everything that is interesting can make a statistic counter click. So you can
check for that. The price is performance and thread locals. See later.

For the errors its easy to use enum's and so I did it with a scheme in mind. Having positive is minor,
negative fatal and 0 is the OK. Tried to use a tenth range per function and it seems I could nearly
make it.

Strategy is best when it comes to the write code, so we spare it here.
So we enter now the macros.

And yes, I know most people hate it. But for this thing the macros have two uses, one is to make the
test for the events and logging flag not too bad. And the other is to make at least some things
possible that can be made with inline's, but then you have to expose code you have otherwise in the
implementation header.

So I covered every function with a proper macro and played all the time the game of hide and seek.

At last for gettime it was worth it. For the rest its for now only some layer above. So I use the
macros most of the time in the external source and not in the module itself — see for the program
sources.

Only the gettime and the writes are of interest her — these use the macro for real and cover the event
flag check with it. So the use of the macro is really with additional functionality here.

All other are for now only layers on top of the function.

And so after the macros we get the functions. And for the conventional functions that's it. So we can
skip this too.

The real fun part starts with the inline functions.
Switch to ATRSHMLOG_INLINE_TSC_CODE nearby 4003.
OK. Here we are back in the click time things.

The Wikipedia for tsc tick counter is the heart for the thing, so don't miss it. We have for now the
only thing here for the gnu compiler and for the Intel way, but when the time is right I plan to do it

at least for the alpha (have one in my museum) the MIPS (also a sgi one here) the itanium 2 (well,
you know: there is a itanum2 here too), and a hppa 64 bit (also one of those in the museum).

Ahem, yes, of course also for real living ones. The Power, the sparc and the ARM — don't know if
the MIPS is a real living one, its after all an old school sgi workstation. Perhaps I have to buy a
MIPS board...

So for the Power its possible to rent one at IBM, and its for free for a month, so I hope to make it.
For the sparc I don't know. That will come later.
For the ARM I guess a smartphone will do it today. Have to learn android then....

So this is the road after the big three missing Linux flavors and the BSD things. Perhaps I make a
Solaris x86 too.

Leaves only the Mac OS X on Intel — have at least a 2005 two core machine here for Power 5, but
that's a bit dead on the market now.

So the Intel macs will come about two months later..
So for now we have here only the gcc and Intel stuff. Later I hope to have the rest.
After the clock thing we are through.

Wasn't so bad after all. No big structs, no self reference pseudo OOP with function pointers and all
that stuff you see all over the place now with tons of macros for pseudo names.

Lets switch now to the internal.h, its the only one left.
OK, here we are atrshmlog_internal.h
The first things as usual, the comment stuff and the includes.

Next is version. Please follow my guideline and change at least the version if you make a change to
the structure of area or log buffer. So this is more a safety for yourself not to run in a version
problem for the tools. If you plan to have multiple in place.

Next comes the usual bunch of magic defines that makes the thing what it is. So we are entering the
adjustment.

First is the maximum buffer size.

If it comes to CPU s the second level cache is about in MB size, and the third level is — if existing —
a some MB thing. Exceptions are the big ones, the VERY expensive big ones and so I use a size that
fits for a simple process nice in the second and third level cache.

Make it bigger and you can slow down for the second level. Make it smaller and you spare perhaps
enough to make it into two in. But I think that's at least a start.

Next is a thing I need for several places. The number of buffers we have in advance. If you touch it
you have to do some additional work in the module for the static buffers. See below.

And yes, its for 32 threads enough for now, so simple multithreaded things are happy with it.

The mincount and maxcount in the area. Use them simply if you need. But I doubt you have to

change them.
Next are the rights to the shared memory and this is set for total access. Simply change if you need.

Now the time we wait in a slave when nothing to do. This is a bit in discussion now after the mingw
disaster. Perhaps we have to set it in future for mingw to one million to get at least a millisecond
sleep there. For now let it so.

Same for the next time constants.

Next interesting values are the preallocs. If you need a lot more threads buffer than the 64 from
static you will need to alloc dynamic. And so this can reduce the number of real alloc's. We do it for
that many buffers in one low level alloc.

Bad side: on cygwin and mingw this is memory we need to initialize for the time penalty of write.
See below the attach for it.

Follows a bunch of things we have to use as limits in the initialization. We can reduce the buffer
size, so there is a minimum.

We can set wait times. And we can set the number of slave threads to use to transfer to shared
memory. And yes, even a 0 is allowed. See the adjustment for a scenario with that.

Next is clock stuff.

And now again an interesting one. The events max. We use a char buffer for the flags, but only one
bit is used for now. So be sure if you make it bigger. You will need more memory then. Its helpful if
you plan to instrumentalize a big system. Then you can definitely use a bigger one.

Next is the number of buffers a thread uses — to be honest I still have not checked if more buffers
work better, so leave it for now to 2, but I think it will work with bigger numbers. You can try at
least and if it does write me a post card...

The constants for the logging type. If you have an exotic environment with non ASCII you need to
do the hard code thing like in the java layer.

What follows in platform stuff — the includes and some basic defines we need in the code, also
some typedef stuff.

The depending things for threads follow, so you can see what it needs for now to honor win and
pthread and c11 here.

After the tid's things we reach the default c stuff includes.
We need time and errno and ctype and stdlib and — ups- again stdint here.

Don't followed the development. Can be something is now no longer needed here.... Perhaps I
spare some time on docs and try to reduce here...

For now we are through after the now needed atomics.

OK. That's already 34 % of the thing. Defines, includes and the depending typedef stuff.

Now some defines that depend on the typedef's and structs are here. Mainly the head size of the log
entry.

Next is the check part for the area — and a nice looking getter for it.

From there on we are in the area of initialization — the names for the environment and flag file
lookup. We use a prefix and you can change it here. For the suffixes I say you should not do that,
but its again up to you.

Last thing in defines are some hard code values and the Debugging flag — we have some printf stuff
in place and you can switch it to on to see that when it comes to testings. But you have then also
stdio.h in place and be sure not to corrupt your programs with it.

Next is the one and only pointer for an area. For now I don't plan to do a handle thing and use
multiple. Its simply out of question for the needs of threads, could be done in about two weeks or
so, but I doubt its worth the work for now.

Now we enter the real heart of the module. The structs for the area, the internal log buffers and
some thread local parts.

First thing first.

After a helper for states of a log buffer we have the thing. Now its time to do this one by one.

The log buffer

We have her the first time an atomic. Its her to make the synchronization for the thing work. We
simply read and write it in a atomic way and so we synchronize also the access. See Williams for
that stuff.

And that's already all for atomics here. The rest is conventional stuff.

We use a size her. Its our buffers size. Then we have some odd looking ints. In practice this is the
shared memory analogous to pointers — to be precise to ptrdiff's.

We cannot use real pointers. That's a fact for all shared memory systems I came over in the last 25
years. Forget it. Use offset's. And if you can live with it ints do just fine. If you thing you need them
you can use ptrdiff's. But for my little logging area the int is OK.

So we have here two lists. On is for the available buffers. They are free and you can use them next
if you need a buffer. The other is the full list. You have a buffer on one of them. And the module has
them in shared memory — so be sure you understand the memory model and make clear this works
for your platform.

If you have any doubt you have to add the fence support. For now I know it works on Linux. For
cygwin and mingw I have no negative, but I also do not test these to rough. So perhaps we have
here a to do. But for Linux I am pretty sure its OK now.

After the lists we have the pid. Its OK to have it here — we support multi process logging so we need
it.

Next the tid. Same thing. We need it.

For the next three I have to explain a thing. We use click times in the module. So you can calculate
the difference and its nice, but sometimes guys want to have human things like milli seconds and
that stuff. So we have the need to calculate these. Doing it from the actual click time is possible if
you know the basic of your OS vendor, but its tricky if the vendor does not like them — You got it.
Its fenster;plural again.

See for the Wikipedia and the discussion about it for them...

So back to that. We have in the attach a real time and two click times. One before and the other
after. So we can build a 50 to 50 match and say that is our start click for that real time. For the
buffer we have again a triple, and so we can calculate a linear approximation for the real times — its
a real easy thing if you can use a simple linear thing. Only problem is you need more than 64 bit to
calculate it. But that's stuff for the converter. For the module and its buffer those six values are the
backbone to calculate the real time.

The next time is the clicktime for the start of the transfer - together with the lasttimetsc_before we
can calculate the clicks it needs to get a buffer from the main memory to shared memory — so if you
remember the introduction of this chapter — we need it to have a clue about the time a shared
memory area buffer is in use from one of the copy things, here the slave.

The next time is a bit simpler — its already the difference calculated by the reader for the other
memcopy. So this is done in the reader and we save some bytes and have to do an subtraction in
place for it.

Next is the buffer id. Every buffer gets one and its an atomic counter so here we have a unique id.
This makes things easy in checks for buffer use.

Next a check sum. Its now not in use, but if you encounter problems and you assume a memory
model problem you can make it and then try the fence for the transfer. This way I found my first
two synchronization problems. So I leave it where it is — its an int so I can live with it.

The safeguard. Every structure that is potential a target for an memcopy should have one — you
never can trust a corrupted log, and this even spawns multiple processes. So this is the least I can
do for checking.

The last we have here is the index to the real data for the log. Its again an int, so for the size I plan
its big enough.

And since I did reinvent the statistics those numbers of course....

So this is the buffer control structure in the area — you will only need the info if you plan to do this
by a new thing — or make the verify better. For now its used internal and for the tools, namely verify
and defect.

Next is the area itself.

The area

We have first the version. So we can detect a mismatch for it. Helps a lot if you have different

versions on your box.
Nest is the id of the shared memory. This is used as an info, and as a check value.

While the version is something easy the shmid is normally a system given number and unique. So
we can use that to check against the multiple init thing — simply set it in an int and if we do an init
again we stop here.

Next a safeguard, as always.

Now we have the two atomics that represent the anchors of the two lists for available and full
buffers. Please note that I use here the index of the buffer, and so a 0 is NOT end of the list. Its a -1
this time.

Next we have the count of buffers from init. Note it can differ from the create — so you can play
games with getting some more memory — but be sure to understand the full layout of the area or you
will end up in memory overwrites in a shared memory buffer.

The next is the system wide log flag. See the source for its name and purpose.
Now we have two times an flag and a pid, one for readers and one for writers.

This is our little morse code approach to communicate with the area between programs. And for the
readers its already in use. For the writers is have no need for now, but its there and when I need it I
have it here.

At last the descriptor array. The real buffers are after the descriptors. And yes, I use here a very dirty
c trick.

See the init for how its done.

Now we come to the one and only buffer in the client

The tbuff struct in client

This is the client and its local log buffer. Its used there and will not be used in the area. So the area
is a different place. Keep this in mind.

First we have the three lists for the buffers. One to connect them all. So this is the cleanup list.
We call it also the s list — sequential.

We only do this one time, but we still use an atomic for it. So we are save for now its not corrupt —
if you don't overwrite it.

The cleanup at exit uses the list to check all buffers for log that is not already at the shared memory.
So this is a vital one. Most simple programs don't need a flush and so they simply exit and leave the
transfer of the log to this mechanism. This is also the reason we cannot use for the buffers thread
local storage — would be nice, but simply does not the trick when we exit the thing.

We also use it in the reuse check with a threads tid now.

The next list is the full list. We have a helper function to put a buffer on the list, and then its up to a
slave thread to move it to shared memory. So this can be 0 in case we are not on the list — or we are

the last buffer.
Next is the list for available buffers — meaning we are not in use for a thread if we are on that list.

Don't miss that - the buffer normally is on the list first and when a thread need one its given to the
thread then. Don't confuse this with an empty buffer — that's a different thing.

Next is the usual safeguard.
Then we have again the pid and the tid.

Now its time for a new time — or precise a clicktime difference. The acquire time is used to check
for the time a buffer needs to be fetched from the available list . This can include the time to
allocate it in case its a dynamic allocated one. So this is vital in getting info about the malloc or
calloc overhead.

Next is the id. So we know that one and only buffer is it.

Now we have the size. A buffer can have a size from 0 to the max. And this can be smaller than the
max define if you reduce the max size. So we have also the actual max in here.

Both are used to determine if the buffer is full — which does not mean that size and max is equal —
we do not split log entry's, so we declare a buffer to be full if the actual payload is too much to fit
in.

This has a big consequence — if you log big data its easy to fill buffers half or so. So be sure what
you log.

Now we have a little but important flag. Its used to say goodbye for the thread to that buffer. If you
finish logging for a thread this is set and then the slave does put it after the transfer to the area on
the available list — so its a definitely goodbye. No way back.

Next is the only atomic I need for the buffer. The dispatch flag. A full buffer becomes this set when
it is moved on the full list. So the thread can now skip it if it check for a usable buffer. The slave
resets the flag when the buffer has been copied. This means we use this also in the synchronization
of the atomic to make the buffer for real in the slave thread — without synchronization we can easy
end up corrupted. There is also some fence stuff here.

Last is the pointer to the real buffer for the log — there you have the stuff you write .

The thread locals

This is the helper we need in the thread to get things together from log to log. Its into a struct so we
use only one lookup for thread local at all.

The struct is also used as a kind of identifier — its address is unique. And the tid inside is used if you
inspect it from outside.

First is the list for threads that are slaves. Its here and so be sure you don't corrupt the slave list. The
list has to be maintained if you shut down threads in your application BEFORE you shut down a
thread.

If a slave shutdown normal it maintain the list itself.

Next is the major flag to signal a vital logging. If you init a thread but have no vital logging its shut
negative. If its 0 its OK. For the initial test its a -1. If you turn off the thread it is set to 1.

So this is a vital flag.
Next are the pointers to the log buffers for the thread. We mean the in memory buffers here.
Next the index for the actual buffer.

Next the count in shared memory, that's a not used for now, but I think I can remove it in some
version.

The next is the strategy flag . Again see the write for it.
Then we have the pid and the tid.
Last the thread local statistics.

That's all for now.

The externs

Then follows a list of externs. These were in the former version static in the one and only module
file. With the split of the module they are now needed extern. But they are after all internals, so
don't use them in any code.

The macros

So for now the header contains also some macro stuff.

The statistics counter setter is easy.

The rest are the layers for create, delete, cleanup and init of area.

Use of these is normally only in the programs of the module — exceptions are the other layers here.

So I decided to put them here and not into the interface header — perhaps I will change it, as far as I
can see its for the four OK to be there now.

Last are the functions, but you know that already ...

Real code

Back to real code. The real C code. The one and only.

Former versions were implemented in one file. So I had a library, but all binary stuff contained the
whole thing.

That felt not right, and so I have split the thing into pieces. Most of it is now linked in if needed. So
you find now most of it in the impls directory. This makes also patches easier.

To make the thing short : we discuss from now on the atrshmlog.c stuff, but then we only discuss
the functions, not the files. So you have to do a grep to find it in impls. But that's OK for me. The
naming of the files should at least give a hint.

atrshmlog.c

Start with atrshmlog.c now.

We have the usual comment stuff here.

Then the include — only one needed.

Next is the thread local struct. We always need it in the code so its here the definition.

You can see we initialize it with the array to 0 and the flag to -1.

Next is the getter for its address. And this is all we have in here. The rest is up to the impls.

We will do them in a loose order of area related, buffer related and support stuff.

atrshmlog_attach

We have to attach to a shared memory buffer.

We do this normally first in the programs. At least when we need a working area. Only the support
programs and the create and delete don't use it.

So this is the first stop for us.
And its a big one. In fact the biggest C source at all for now.
The thing is simple.

Use the environment variables or the flag files and get it up. Try to connect to the area. Then
initialize the rest inside the program — NOT THE AREA.

So if this code is done we have one of two things. A connect to the area or a null pointer and the
flags set to 0. No logging. No events set. No values of interest.

The thing starts with some helpers. Perhaps I give the putenv a try in the next version for the
interface, but for now its off — crashed in the SWIG perl layer

Same for the init. Its a bastard to cover the two worlds of variable and files.
Next we have a helper struct. The real thing is then inside the attach function.

The attach should initialize the module. So we prepare for the worst and use atomics here to make
multiple calls impossible.

This can lead to a busy wait but that's OK for me — you start your program and you call then attach

— so if you encounter multiple instances running you have at least a strange sense of doing a module
init....

After is has locked the once atomic it checks for its own helper once flag. That's also used from
some of the functions. So don't spoil it.

Next is the time thing for the inittime.

Then to the core function: get the shared memory id — This is also the check for the need to use flag
files. Its a bit a slow down if you start a program without logging, but its no big deal. If you don't
want to make file stuff simply set an invalid shmid for it. 0 is perfect....

Having the shmid is then the next thing. Now it starts the connect . And that's the place where we
have the first time the platforms.

Needs a helper on mingw to get the memory mapped file connect. See then that helper code if you
need it. For the others its the usual shmat call.

The result determines if we are out — no area — or in. And this is the one and only time. No
reconnect so so. I know, perhaps that a nice for some silly platform, but not for the rest of us.

After an mismatch we set the shmid to 0 and that's it.
For the rest we check at the end.

If its OK — we have a connected memory — things are as expected. Set the pointer and the id for the
process.

We also set the env — seems a bid odd but for the flag file thing we better do it. So its a bid oversize
for the env — its set after all — but OK for me.

Update: the putenv is for now only active if you set an define. The perl makes a core otherwise....

Now we use the helper array and set up all the things we want to know from the init things —
variable or flag file does not matter, but we can use only one of them.

So then we use the suffixes, set the internal variables and that's it.
After the thing we initialize the buffers if this is needed — see the mingw for this.
Next we init the event lock buffer — if needed we make it bigger by using the dynamic memory.

The init is a bit bigger than you think, but its only a helper for the attach. For now its in a separate
file, but I think I will change that. Its only needed here after all.

Next we set the atexit helper and this is vital for us. So the result for the attach is set to the success
of this.

Then we start the slaves. Default is one, but it can be 0 too. This is to cover some simple programs
that don't log much and end simple and clean in the exit.

After the slaves are up we check if we do logging from here on. If we don't its the program that can
switch it on. If you have a tricky start up and want the thing initialized, but not running you start it
off. Then you have the control and can switch on when its time.

The rest is to set the shmid.

And now we have a small trick to do here. We store the pid in this special variable. If we have a so
called fork clone we can use this and the in place pid's for the old buffers to skip them — they are a
relic of the former father.

Last things are the switch of the two initialized flags — the one for the others and our own.

After we are attached its possible to use the area. We have not initialized it — that's a separate thing
here.

And we have not accessed it. Its only attached and we hope the best for the use of it.

Now we can check for the use of it. First we do the simple thing. Init it.

atrshmlog_init_shm_log

We have to init the area.
So you have an area but its only raw memory. You need to init it.

Yes, we could have done it in the create too — but then we would have combined two very different
things — the creation and the use. So I have them still separate here.

Init uses a helper to do it for each buffer.

The thing is easy to read, but be careful for the parameters. We use the address of the area and then
the index of the buffer. The rest is simple with the exception of the append.

We set it to the index plus one, so we point to the next buffer.
This is done with the design of the area in mind. So don't spoil it.
Back to the main function.

After the checks we have the fence 12 here. If you encounter problem on your platform for the
access to the area set it on.

We check then for reinit — its forbidden.

Next we calculate the number of buffers ahead for the log buffers and use that as start for the log
data buffers. There is some adjustment stuff to hit an aligned memory number — its a simple one and
an alignment for 16 is good for all platforms I know.

Next we init the buffers with the helper.

When we have done it we correct a little mistake for the append list.

The rest is more or less simple. Only keep in mind we use a -1 as end of list here.
After setting the shmid the thing is official initialized.

At last we use a fence again here — if we need it for the access we also need it to announce our
changes to the others.

atrshmlog_cleanup_locks

We cleanup all resources that we hold in the area.

This is needed in case we have OS resources here. This was the case with the mutex things, but now
we only have atomics. To have the step is now an option. But if you plan to reinitialize the area this
is a nice helper.

We change the states for the buffers. Then we switch the shmid and the safeguards.

atrshmlog_verify

We have to check for consistency.

The verify has a fence to make sure you have it in your thread. Its off for now.
First we check the id in memory and in the area.

Next is the version.

It follows the check for every buffer.

For now we don't check the log buffer itself.

atrshmlog_create
We need the buffer from the OS.
First we check the parameters, and here we have a special for mingw. It uses a naming internal and

the parameter is not an OS thing, but an index in a names array. Its made to work for index 1 to 32
for now.

We calculate a full buffer size, which is the area struct and the bunch of buffer structs. We have here
to use the trick from the common ¢ community of having a dummy array in the area and adding the
rest of the array size to it for the buffer structs. After the structs the log buffers follow last.

After that we set the flags and do the low level call for the posix systems and cygwin. For mingw
we do the file mapper.

Result is a positive number in case of success.

atrshmlog_delete
We need to destroy that buffer.

For the posix and cygwin we use the OS call. For the mingw its a dummy. That system uses
reference counting. So we have to detach from it or the end of process will do the thing. The last
process that disconnects then also destroys indirect by getting the reference count to 0.

So no code here for mingw.

atrshmlog_get _area
We get the area address.

Simple getter for the pointer.

atrshmlog_get_area_count

We get the area count.
We check and get the area count here.

Note: It is rare used, so I didn't make a fence here, but if you need it sent me a post card and I do it.

atrshmlog_get _area_version

We get the area version.
We check and get the area version here.

Note: It is rare used, so I didn't make a fence here, but if you need it sent me a post card and I do it.

atrshmlog_get _area_ich_habe fertig
We get the system wide logging flag.

We check the parameters and then get the flag.

Its here an atomic. So no fence.

atrshmlog_set_area_ich_habe_fertig
We set the system wide flag for logging.

After we have checked it we get the old value.
Then we set the new.

We return the old value.

atrshmlog_transfer_mem_to_shm

We transfer a buffer to the area.
After a lot of checks we take a time to calculate the transfer time.

In case you encounter problems you can then make a check sum. It slows down a lot, but in case
you do have problems its the only way to do it right to detect.

We then loop till it is done.
We get the top of the available list in the area index.
If no buffer is available we sleep and try again.

To be sure we don't hang for ever we check in that sleep loop two of the flags, the system wide and
the final.

After we got a valid index we do the pop from stack thing. Check Williams on the memory orders if
you have a question for them , in doubt you can contact me .

After we got a valid and made the pop we can now safely use the buffer.

We cut of the available list.

Then we set the values.

The transfer of the log can be made in a loop instead if you are hunting a synchronization problem.

Last is the time stamps for the calculation. The before time is also used with the starttime to
calculate the time for the transfer.

The time is then set in the atomic variable for the process to be used in the adaptive wait strategy in
write. See below.

The we can use a fence 5 if we encounter problems of synchronization.
Last is the state switch for the buffer, so it can be found with our read functions later.

Then we push it on the full list for the area for the read fetch.

atrshmlog_read_fetch

We transfer a buffer with log from the area into process space and clear the buffer in area.

First we set the length of transferred data to 0 — this is needed to make a return without error but
also without log valid. We then simply skip that try.

If we have not done it we initialize our thread local buffer.
We check the valid flag — if we are not valid we leave.

Next we check the area safeguard. This is a bit risky, we don't have an atomic here, but the thing
normally never changes, so its OK for me.

Then we fetch from the full list.
If we get a valid buffer we can use thread fence 4 for a full sync.
We then check the sizes to detect corruption of it.

We have a bit spare memory in place, but in theory the size has to be positive and best equal to the
max size.

A 0 is possible here.

In case of a 0 we set the state to free and push it again on the available list.

If the size is not 0 we take the start of transfer time time stamp.

Then we transfer the log.

Again we can do the thing in a copy loop in case we encounter synchronization problems.
Next are the copy of the values and the end of transfer time stamp.

A thing that has been removed is a calculation of a check sum and a check her. We can do that later
in the reader if its needed.

Again we switch the state to free and push the buffer in the area to the available list.

atrshmlog_read

We transfer a buffer from the area into process space , old version and no outdated.

This will be removed in a later version.

So in short its the read fetch, but not with the list stuff. We check for the state and that its.

The index is fix. So the check is done for one buffer and its up to the process to decide which it is.

Because we don't maintain the lists its only there to show the old days way.

atrshmlog_alloc
We get a new buffer for the threads for logging.

First we check the available list for a buffer.

If we get one we return its address.

If the available list is empty we check if allocation of dynamic memory is available.
If not we leave with O pointer.

We lock the atomics flag and recheck.

After that we unlock and leave if no alloc is possible.

In case we can alloc we get prealloc count buffers with one low level alloc.

If the alloc fails we set the no more alloc flag and leave with 0.

We init the buffer descriptors and connect the new buffers to the available list.

We leave the lock.

If we got the raw memory we can use thread fence 8 to make the memory available in case we have
synchronization problems.

We try again to get a buffer from the available list .

This is a pathologic case here, in principal we could have a lot of threads waiting, and after we got
the work still end up in eaten up all available buffers before we can pop from the available list. So
its mandatory to start again with the initial check, even if its normally clear we have now buffers on
the list.

After we got a valid buffer we leave.

atrshmlog_il_connect_buffers_list

We initialize the buffer descriptors and connect the buffers to the lists.
We initialize the buffer structs and connect them for the append and cleanup list pointers.

Then we add them for the last buffer the anchors of the cleanup list and push the top on the stack -
this is not a simple push, but a push of the whole bunch of buffers in one atomic operation.

Same thing then here for the append list.
Note that the thing can also do the connect to the log buffers if the parameter is set.

If a buffer is already initialized it can be simply pushed on the lists with the thing — no initialize
then with the log buffer, no loop, only the two push's.

atrshmlog_acquire_buffer

We get a buffer from the alloc and initialize it for the thread.

First we take the time to make the acquire time in case we succeed.
Then we call atrshmlog_alloc to do the low level stuff.

After we got a buffer from alloc we set it initial.

Last thing is to take the end time and calculate the acquiretime.

In case of problems we leave with a 0.

atrshmlog_dispatch_buffer
We push a buffer from a thread on the full list.

We check the buffer is for real and we have it not yet on the full list — this is done with the atomic
dispatched flag.

If it is dispatched we leave.
Then we use in case of synchronization problems fence 1 to get the buffer in.

We set the dispatched flag now and then push the buffer on the full list.

atrshmlog_free

We give up ownership of a buffer.
The flags are set to reused and then the buffer is pushed on the available list.
No cleanup or transfer is done.

This a simple helper.

atrshmlog_flush
We push our buffers to the full list.

We loop and push them with dispatch on the full list.
This is done even with a 0 size buffer.

In case the dispose flag was set the buffers are then no longer available for the thread. So this has to
be done also with an size 0 buffer.

After the call you have to wait for logging at least till the buffers made it to a slave proc and have

been cleared for the dispatched flag.

atrshmlog_write0, atrshmlog_writel, atrshmlog_write2
We wrrite to the log.

We have three write functions. Beside the handling of payload they are equal. So this is for all three
write functions.

After the parameter checks we get the thread local buffer.
If the thread local is not initialized we do that.

So a thread only use to log — no other thing needed.

We then check the eventflag for a point in time logging.

In this case we check the starttime parameter. If its 0 we get a new starttime. Then we set the
endtime with the starttime.

If we have not a point in time log we check the endtime parameter. If it is O we get a endtime.

This is the hidden mechanism to make less calls in the layers for other languages. In C and C++ it is
no big advantage against the taking of times in advance.

Next we do the argv array concatenation in case of write 2.
We then calculate the payload length.
We start the buffer checks.

We have to check for an not dispatched buffer first.

If we have no luck for our buffers we use the thread strategy to decide what to do.

We can discard the log. So we loose it but we have no penalty for a wait time. This can be used for
threads that are critical to do the job fast but still should give info .

We can wait for the wait time flag value. This is the default and needs to work good a working
nanosleep function at least. Doin't know if we have luck on f.....

We can spin loop. This is CPU consuming but fast if we have only seldom a hit for it.

We can wait adaptive. This is done by using the last transfer time for a buffer and make a simple
assumption about the average wait time. We use the count of buffers to break it down and then try to
sleep that time.

So for a fast memory transfer the time is short, for a slow it is long. And its in regard of the last
done time, so we have a kind of self adjustment here.

To work faster we have a version with a slash down to half and tenth the time.

You have to check for the times you have for the buffer transfers to decide if the thing is worth the
use — in case of a relative stable time a simple wait with the proper time is better.

We check in the wait case also the final and logging flags every iteration, so we can be stopped by
those flags.

After we got an not dispatched buffer we can synchronize with fence 2 if we encounter problems.

Then the buffer's max length is tested against the total size — it is possible to be exceeded in the case
a reduction was done for the size and we have a dynamic allocated buffer at hand.

Next we check if we have the needed space free. This is done against the actual buffer sizes.
If the buffer has not the amount free we dispatch it and start over again with the dispatch loop.

This can mean you have with a big logging in short time all buffers dispatched and then to wait. For
small payloads its rare to hit the size limit, rough 10000 logging's are needed to fill a buffer with a
small payload.

If the buffer has sufficient memory left we calculate the actual position in the log buffer and transfer
the parameters. This is done by memcopy for now, later I try to switch to a better — faster — way.

In case of write 1 and write 2 the payload and also the argv concatenated buffer is appended. The
argv is limited to 64 K in this version, you can make that bigger but there is a buffer in place so
don't overdue it.

In the layers the argv for write2 is not implemented. You have to concatenate the arguments there by
yourself.

After the transfers the size is updated and we are through.

In case of the write 2 we have then the concatenation of the argv array — its the classic C argv
approach. We use a helper buffer here. Later I will switch back to a direct copy, its faster and we
don't have the helper buffer any more. Still the thing will be limited to not hurt the size limits to
early.

atrshmlog_init_thread_local

We initialize the thread local struct.

We check for already init.

If its init we deliver the flag .

If it is not init we clear the buffer pointers, then we check for a valid connect area.
In case of non connect or version problems we leave with flag set to no logging.

In case the area is OK we set pid and tid and the strategy.

atrshmlog_init_in_write

We init in the write function.
We first init the thread local buffer.
We then lock an atomic lock flag.

We then check for a fork clone situation. This can happen in case your program forks but does no
exec. A shell is an example for this thing to happen.

You then have to start the slaves for the forked process or you will not log till end of process
happens with a cleanup.

So the memory contains in a fork clone the old pid of the father. We check that against our pid. If
the pid is a mismatch we have a fork clone process. So we start the slaves and then reset the process
pid.

After the fork clone check we clear the flag — if another thread was in, it will then only see the
already new pid.

Then we get the buffers.

If we encounter a problem we give free the already allocated buffers and then leave nonlogging.

atrshmlog_stop
We stop logging for this thread.

We switch the logging flag in the thread locals to off.

Then dispatch the buffers with a set dispose flag. So they will be moved to the available list after
the transfer to the area.

atrshmlog_turn_logging_off
We stop logging for possibly another thread.

We get the logging flag for the thread determined by the thread local struct.
We then can use fence 13 in case we have synchronization problems.
We switch logging off and we dispatch the buffers with the dispose flag set.

So the thread cannot log any more and its buffers are on the full list and will be pushed on the
available list.

The thread can be a slave thread. Then there are simply no buffers. The flag is switched and the
thread will end itself when it loops in the next iteration. So this is a graceful stop for the thread.

This will NOT work it the thread has ended — there is simply no more thread local then.

So you cannot use it after a thread has ended or you killed it.

atrshmlog_reuse_thread_buffers

We have to reclaime dead buffers for killed threads.
We get the head of the cleanup list.
Then we iterate the list.

For every buffer we check first the atomic, then we can use fence 10 if we encounter
synchronization problems.

We skip if the safeguard is corrupt.

We skip if we have the wrong tid or pid — eventually a fork clone father in place.

We set the dispose and then dispatch the buffer, so its content is back to the area after.
We deliver at last the number of buffers we found.

This should never be used for a still living and logging thread. Use only if you kill threads — any
other thing makes a clenup.

If you end threads without cleanup in the thread you should do this to reclaim the buffers.

atrshmlog_exit_cleanup

We cleanup the buffers at end of program.

First we check if logging is on with a valid area.

Then we initialize our thread locals if needed.

We set the process wide logging to off.

We set the slave flag to exit to on, so slaves will in the next iteration leave the loop and exit.

If the wait for slaves is active we then loop till we find all slaves are down. This is off by default. It
works only if the slave cont is accurate, so if you kill slaves you have to use the decrement slave

count to balance the slave count, too.

We get the actual pid to detect a fork clone scenario.
We cut off the cleanup list and then iterate it.

We use fence 10 if we have synchronization problems.

The buffer is dispatched if it contains log and the fork clone test detects no father buffer. So only
buffers of the actual process are transferred to the area.

Last we switch the final flag on so no more logging and slave activity takes place. This cannot be
set back so its final.

atrshmlog_create_slave

We create a new slave thread.

We use the thread start function of the OS and start the new thread.

We deliver the result as a return value.

We deliver in case of c11 and pthread the thread id in the global variable
atrshmlog_f_list_buffer_slave.

This is not good enough, but for now its the thing you get. Will change this in a later version.

atrshmlog_f list_buffer_slave proc

We iterate the full list and transfer log buffers to the area.
First we init the thread locals buffer.
Then we put our thread local on the slave list. So we are now part with our thread local on that list.

This will be changed later to use conventional memory. For now its a fact its done with the thread
local. Keep that in mind if you plan to kill threads.

We maintain the slave counter.

We then enter the iteration loop. Its controlled by the flag
atrshmlog_f_list_buffer_slave_run, so you can stop all threads for the next iteration by it.
In the loop we check the thread local flag, if this is switched we leave.

We check for an buffer on the full list.

If we don't get one we sleep. In the check loop we leave if the final flag is set.

If we have a buffer we check the dispatched flag.

Then we synchronize if needed with fence 6 the buffer.

We check the size and transfer it if it is not O to the area.

After the transfer we synchronize if needed with fence 7.

We clear the dispatched flag. If the dispose is set we free the buffer.

So the thread that holds the buffer is responsible to no longer use it in that case.
After that the iteration starts again.

When we leave we maintain the slave list and the slave counter.

atrshmlog_decrement_slave count

We decrement the slave count.

We decrement till we hit a 0 for one.

This is needed if you kill slaves. Then its up to you to maintain also the slave count and the slave

list. You have to use this in this case. Don't use it elsewhere.

atrshmlog_remove_slave via local

We remove a slave from the slave list.

We need this if we kill slave threads to keep the slave list intact. The list is made for the thread
locals in the thread local struct. So you have to use this before you kill the thread or the list is
corrupted.

Be prepared that you cannot use the turn off with it together — this try to remove the thread itself. A
race condition is the result then.

So you will loose the buffers.

First we make some checks and then we iterate the slave list till we hit a 0, a self or the former in
the list.

If its a O the slave is already off and we leave.

If its a self we are the top of the list and we pop from it the pop then. No further check and we
leave.

If we hit the former on the list we use our next member to set the former and so leave the list.

atrshmlog_get _next_slave_local

We get the next slave local from the slave list.

If we call it with 0 it will get the top of the list.

Else it will deliver the next for the given thread local.

This works only if the list is intact. So don't use it parallel with turn off or with remove form list.

In a later version I will use another layout for the slave list and then there will be mt safety too.

atrshmlog_get_env

We get an environment variable value with prefix and the suffix.

We build the full name and then get the value.

atrshmlog_get _env_shmid

We get the shared memory ID from environment.

atrshmlog_get _env_id_suffix
We get the ENV SUFFIX value.

atrshmlog_get _env_prefix
We get the prefix.

If we are executed first time we use the default prefix to check if another is given as environment
variable. So you can redefine the prefix by setting a variable with its name.

After the check for all further calls the prefix is fix.

atrshmlog_set_env_prefix
We set the prefix.

We check if the prefix buffer is already set. If yes we leave.
Else we move the parameter text to the buffer.

This is not mt save, but I think its OK for me. Simply do this only at one place and best with alloc
after it.

atrshmlog_buffers_prealloced

This is not only code, more about the static buffers.

We use static buffers to speed up the logging for the used buffers. This is done by using the buffers
as static array with connected entry's. Also the log buffers itself are done static.

The thing is initialized with the Macro

ATRSHMLOGBUFFERS_PRE

for the first buffers.

The last buffer is initialized with

ATRSHMLOGBUFFERS_PRE_LAST

Its mandatory that then buffers are initialized in the given order and with the correct index number.
The last must be also the ATRSHMLOGBUFFER_PREALLOCED_COUNT - 1 index.

Anything else and you will encounter buffer shortage at best, crash landing at program start or

worse unpredictable program log run.
We use for now 64 buffers. That's enough for 32 threads for use of two per thread.

If you plan to use the log in a high number of threads environment you should raise the number to
match at least your starting values.

If the static buffers are fetched by alloc from the available list an acquiretime withing 200 clicks is
OK.

If you encounter much higher costs check your platform for problems with static variables and
initialization.
Keep in mind that a big number of buffers always mean you need more memory. So this can cost

time in the program. But for most platforms a static buffer has no run time cost. So this is preferable
over the dynamic allocation.

There is one helper to init the chunks for the log buffers. This is switched on in cygwin and mingw.
So the log buffers are not only static but also accessed. This cost some time at program start up. But
it reduces access time for logging drastically in the write functions.

On Linux the helper is not needed, but you can switch it on if you need.

atrshmlog_il_get raw_buffers

We get new buffers from the dynamic memory.

The buffers are fetched with one low level alloc for the number of buffers and the size for the log
buffer itself.

The total size is allocated for one low level call, its a malloc for normal and a calloc for init in
advance case.

If there are new buffers the alloc count is maintained.

atrshmlog_get _logging
We get the logging state.

The first is to check for a connected area. If not connected we don't log and leave.
There is a fence 10 in case we encounter synchronization problems.

We check the system wide log flag in the area and leave if we are not logging.
We check the final flag and leave if we are not logging.

We check the process wide flag and leave if we are not logging.

Else we log and return that.

atrshmlog_get realtime

We get a real time.
We use the best approximation for the platform we have for now.
We set the seconds and nanoseconds part then and return.

In case of mingw its the lifetime with a precision of 100 nanos. In case of the posix and cygwin its
the clock_gettime.

If we don't have them we try gettimeofday and calculate the nanos from the microseconds.

atrshmlog_get_statistics

We get the statistics counter array.
First we deliver the actual click time in low and high part for the field 0 and 1.
Then we deliver the statistics counters.

The array must be big enough or you overwrite memory. To make it right you use the
atrshmlog_get_statistics_max_index and add at least one and then make the buffer.

For now there are 85 counters, so an array of 100 is doing fine.

atrshmlog_sleep_nanos

We sleep nanoseconds.

For the platforms with nano sleep its doing a loop for every 100000.
For the platform without it calculates the milliseconds and does that.
At least it calls a sleep O for it.

So you have to check your platform. In case of fenster;plural it simply cannot do better than milli.
Don't try to use a busy wait here. This is not what you want in the end for the module.

atrshmlog_set_event_locks_max
We set the event locks limit and adjust the buffer.

The new limit is checked and if its smaller nothing happens, only the limit is reduced.

If its bigger a new buffer is allocated from malloc and the old part is copied in. The rest is initialized
with 0.

atrshmlog_init_events

We initialize the events in the event buffer.

We use environment variables to do it in the first way, files in the second.
First way.

We get EVENT NULL and EVENTONOFF.

Then we decide with EVENT NULL to do positive or to do negative logic.
Positive is to set the buffer with 1, negative to set it with 0.

In positive then we use onoff to switch the given events off. In negative we switch them on. If a
number is out of bounds for the event lock array its ignored.

Second way.

We do the same but use the flag file for NULL and a file with event numbers in onoff.

atrshmlog_get _acquire_count
Simple getter.

atrshmlog_get_buffer _id
Simple getter.

atrshmlog_get buffer max_size
Simple getter.

atrshmlog_get_buffer_size
Simple getter.

atrshmlog_get clock_id
Simple getter.

atrshmlog_get _env_id_suffix
Simple getter.

atrshmlog_get _event
Simple getter.

atrshmlog_get _event locks_max
Simple getter.

atrshmlog_get thread _fence 1
Simple getter.

atrshmlog_get thread_fence 2
Simple getter.

atrshmlog_get thread_fence 3
Simple getter.

atrshmlog_get thread fence 4

Simple getter.

atrshmlog_get thread_fence 5
Simple getter.

atrshmlog_get thread_fence 6
Simple getter.

atrshmlog_get thread_fence_ 7
Simple getter.

atrshmlog_get thread_fence 8
Simple getter.

atrshmlog_get thread _fence 9
Simple getter.

atrshmlog_get thread_fence 10
Simple getter.

atrshmlog_get thread_fence 11
Simple getter.

atrshmlog_get thread_fence 12

Simple getter.

atrshmlog_get thread_fence 13
Simple getter.

atrshmlog_get f list _buffer _slave count
Simple getter.

atrshmlog_get init_buffers_in_advance
Simple getter.

atrshmlog_get inittime
Simple getter.

atrshmlog_get inittime_tsc_after
Simple getter.

atrshmlog_get inittime_tsc_before

Simple getter.

atrshmlog_get_minor_version
Simple getter.

atrshmlog_get patch_version
Simple getter.

atrshmlog_get prealloc_buffer_count
Simple getter.

atrshmlog_get _shmid
Simple getter.

atrshmlog_get f list _buffer _slave wait

Simple getter.

atrshmlog_get_statistics_max_index
Simple getter.

atrshmlog_get_strategy
Simple getter.

atrshmlog_get_strategy process

Simple getter.

atrshmlog_get tid
Simple getter.

atrshmlog_get thread local_tid
Simple getter.

atrshmlog_get version
Simple getter.

atrshmlog_get wait_for_slaves
Simple getter.

atrshmlog_set _init_buffers_in_advance _off

Simple setter.

atrshmlog_set _init_buffers_in_advance _on

Simple setter.

atrshmlog_set_buffer _size

Simple setter.

atrshmlog_set clock_id

Simple setter.

atrshmlog_set_event

Simple setter.

atrshmlog_set _thread fence_1

Simple setter.

atrshmlog_set _thread fence_2

Simple setter.

atrshmlog_set _thread fence_3

Simple setter.

atrshmlog_set_thread fence_4

Simple setter.

atrshmlog_set thread fence 5

Simple setter.

atrshmlog_set thread fence 6

Simple setter.

atrshmlog_set_thread fence_ 7

Simple setter.

atrshmlog_set _thread_fence 8

Simple setter.

atrshmlog_set_thread fence_9

Simple setter.

atrshmlog_set thread fence_ 10

Simple setter.

atrshmlog_set_thread fence_ 11

Simple setter.

atrshmlog_set thread fence 12

Simple setter.

atrshmlog_set thread fence 13

Simple setter.

atrshmlog_set _logging process_off final

Simple setter.

atrshmlog_set _f _list_buffer_slave count

Simple setter.

atrshmlog_set logging_process_off

Simple setter.

atrshmlog_set _logging process_on

Simple setter.

atrshmlog_set_prealloc_buffer _count

Simple setter.

atrshmlog_set f _list_buffer _slave_wait

Simple setter.

atrshmlog_set_strategy

Simple setter.

atrshmlog_set _strategy process

Simple setter.

atrshmlog_set _thread_fence

Simple setter.

atrshmlog_set_wait _for _slaves_off

Simple setter.

atrshmlog_set_wait _for _slaves_on

Simple setter.

atrshmlog_set f _list_buffer _slave_run_off

Simple setter.

atrshmlog_init_via_env

Helper for init.

atrshmlog_init_via_file

Helper for init.

NON INLINE CODE

We need for the inline functions in case we switch inline off implementations.
So for every platform we have them here.

We use the defines to make the one and only visible for the compiler we need.
In the inline functions we do for now only two things.

Get the click time.

Get the clock time.

Get the clock time is for now a simple switcher for the clicktime you need. Default is to use the
simple clicktime.

For the platforms on Intel architecture we have possible a clicktime with a fence to hinder
optimizations to move it around.

And there is an advanced clicktime with the fence thing already in place internal.

The rest are the click time getter's. They use inline and assembler. They are for the Intel platform for
now.

See this one:

/**

*\n Main code:

*

* The simple version, no check for fences

uint64_t atrshmlog_get_tsc_x86_64_gnu(void)
{

uint32_t hi, lo;

__asm volatile

("rdtsc" : "=a" (lo), "=d" (hi));

return ((uint64_t)hi << 32) | lo;
}
We have here the gcc inline assembler in place.

To make it you need the gcc compiler. Another compiler and you have to make it there, or use a
mixed approach for linker compatible objects.

$ nm atrshmlogimpl_non_inline_code_linux_gcc.o

U atrshmlog_clock_id
0000000000000040 T atrshmlog_get_clicktime
0000000000000010 T atrshmlog_get_tsc_fence_x86_64_gnu
0000000000000030 T atrshmlog_get_tsc_null_x86_64_gnu
0000000000000000 T atrshmlog_get_tsc_par_x86_64_gnu
0000000000000020 T atrshmlog_get_tsc_x86_64_gnu

U _GLOBAL_OFFSET_TABLE_

as you can see there is not much inside the object code — so if you can't do it for your compiler you
can use the gcc in place to make the thing and then link the non inline to the library.

So it is possible to use them even if the main compiler does not support inline assembler.

Last resort is to make a dummy function, make the assembler code with the magic compiler switch
-S and patch the file. Then run the assembler to make the object.

For a simple dummy we get

file "ass.c"

text

.globl atrshmlog_get_tsc_x86_64_gnu

.type atrshmlog_get_tsc_x86_64_gnu, @function
atrshmlog_get_tsc_x86_64_gnu:
.LFB2:

.cfi_startproc

pushq %rbp

.cfi_def cfa_offset 16
.cfi_offset 6, -16

movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $4711, -4(%rbp)
movl $4812, -8(%rbp)
movl -4(%rbp), Y%eax
salg $32, %rax
movq %rax, %rdx
movl -8(%rbp), %eax
orq %rdx, %rax
popq %rbp
.cfi_def cfa?7,8

ret

.cfi_endproc

.LFE2:

.size atrshmlog_get_tsc_x86_64_gnu, .-atrshmlog_get_tsc_x86_64_gnu

ddent "GCC: (GNU) 5.3.1 20160406 (Red Hat 5.3.1-6)"

.section .note. GNU-stack,"",

All left is to replace the
movl $4711, -4(%rbp)
movl $4812, -8(%rbp)
with the
rdtsc
movl %eax, -4(%rbp)
movl %edx, -8(%rbp)
after a quick compare.

Then assemble the thing and you are there
compiler.

@progbits

.... At least if your assembler is the build chain part of the

That's a thing I have not to do, my compiler supports so far the inline assembler in place.

All files with _flag.c
They hold the flag variables.

All files with buffer.c
They hold a buffer.

All files with _list.c
They hold a list anchor.

Best behavior

For most of the functions its easy. You use it only if you have to.
If you try something strange — lets say a atrshmlog_get_area_count(13); - you are on your own.

If you try to do something you really need and you are in trouble — let's say you DO have to kill
slaves — then this is another story. I have made the functions so far that you can do the thing, but I
am best against this. So you can do it. But if you miss it for one of the things that you have to
encounter simply sent my your full code — and I mean here full, not the two lines you have with the
problem call in place — and I am in. Any thing I can not see for my self and you are off...

So use the simple rule of best behavior: Leave the place always a bit more cleaned up and nice then
you have found it.

Appendix

Here we have the usual lists.

lHlustration Index

[lustration 1: The BASEDIR after unpacking the tar ball...........ccccoeviiiiiniiiniiniiiieeeeeee, 32
[lustration 2: The bin directory with the build SCIPES........cccvveiriieiiiiiieiiececeeceeeee e, 33
[lustration 3: The clean SIC irBCTOTY.......eevutirrieiriieieerieeieerte ettt e ettt e seeesaeesbeesaaessseeennns 34
[lustration 4: Check for complete SCIP StATT........ccveeriiereeerieerieeieeseeereeseeesreeseeesaeeesnneeeessseeessnnes 35
[lustration 5: Result for the check complete SCHPL........cccueerieriiiriienieeeere e 36
[lustration 6: Analyze the system with the check system SCIPL........cccceevueerrieerrieeniieeniieee e 37
[lustration 7: Setting the right @NVIFONMENL..........cccueriiiiriiiiiiiereeteeeee e 38
[lustration 8: After the makeall.sh finished............ccocooviiiiniiiinie e 39
[lustration 9: Checking the build result with @ ls.........cccceiiiiiiiniiinie e 40
[Mlustration 10: A first test. We create a buffer for 8 log buffers with key 4711........cccccvvvveennnennee. 41
[lustration 11: Initialize the Area...........coceeieiirierieieiere ettt 42
[lustration 12: Testing the log with the hello world demo program..........cccccceeevueeerciieenieeeeeeennnneen. 43
[lustration 13: Setting the area to no more logging and reading the data...........ccecceevveriieereenceeennns 45
[lustration 14: The content of the directory tree d1 after transfer............ccccevveeeeiieeiieeiienieeecieenieens 46
[lustration 15: Convert binary to human readable teXt...........ccccueeviiiriiniiiiniieniierieeeesee e 47
[ustration 16: The resulting 10g in teXt fOIM.........cccveeiieiieiieeiieeeeeeeee e 48
[lustration 17: Supported platforms in the atrshmlog.h header (previous version ...)........ccccceeueee. 49
[lustration 18: Detecting the OS and the architecture with uname...........cccceeeeveeriieievieeeiieenieeennns 50
[lustration 19: Platform check for another SyStem............cccooieriiiriiiniiiiiienieeeee e 51
[Mlustration 20: Check for a conform compiler and the atomic header............cccceeverviienieeencreeeennnen. 52
Illustration 21: Check for a C 11 feature, the _Thread_local........ccccouvvveeiiiiimiiiniiiiiieiieiiieeeeeeeeeeeiiinns 53
[lustration 22: Limits fOr the USET........ceiiiriiiiiieieieeiesteeeeeee ettt 55
[lustration 23: A hello world program C SOUICe COAe..........ceeriirriienieriiiiniienieeeniieeerieeeerreeesireees 61
[lustration 24: A hello worlds internal Stuff.............cccocieiiriiniinii e 62
[lustration 25: The include added...........cooeeieriiiiriiinieeeeee et 64
[lustration 26: Attaching t0 the Area.........ccccueeieiieriiiieieeceeeeee e e e e e sera e e e e e aeaes 66
[lustration 27: Adding the logging (and correcting a Nasty €ITOr t00).........cecueeeervereerersuenreersueennne 67
[lustration 28: The build and @ firSt tSt.........cueeverieririerieeeterte ettt 68
[lustration 29: The output after a test against an active area (and SOMe UPSES).......ccecveeerruveeernnnnn 69
[lustration 30: The deep StULF.........cccuiiiiiieeceeeee et re e s e e e e aeeaee e 69
Illustration 31: The online documentation for ATRSHMLOG_WRITE........cuuuuvuieeeeeeeeeeeeeeeeeeeeeenens 70
[Nlustration 32: Hello world with use of argv and timing the printf.............cccccoeeeiiiiiiiiieeiieeee. 75
[lustration 33: The test for hello world with argv use and printf timing...........ccccceevverriieeinceeennnee. 76
[ustration 34: The java aS@ diT@CLOTY.....ccueiiruierrieeriieeeireesiteesieeesteeesreeesareeeseaeesssaeesssssreeesessnnssees 85
[lustration 35: The java bin With itS SCIIPES......cceiriirriiirieriierieee e 86
[lustration 36: The vVendor's dir€CLOTIES........c.cueirieriuierierieeeteete ettt ettt e s e s 88
[lustration 37: Transfer from BASEDIR/src to the vendor's directories.........ccocceeerveeeneeenveeneeenne 89
[lustration 38: Inside @ VENAOT AI€ICIOTY.......ccccutieriieeiiieeiieeecieeeteeeee et e esreeeseeeesnaeessreeesseaeesnnns 90
[lustration 39: .. and MOre INSIAe Of Qf.....cccuivirriiriiriiiereee e 91
[lustration 40: Inside the PACKAZE.eeeeviiiiiiieieeceeeeee e sae e s ae e e 93
[lustration 41: Setting up the build enVIroNmMEeNLt.........c.cooveriiiirieriiiieeeeeee et 95
[lustration 42: Crete the jNi lIDrary........coeceeieiiiiiiieeeeceeee e e 96
[lustration 43: Test of the jNi BIid@e........cvevviieriiriiiieeeeee e s 97
[lustration 44: The python basedir...........cccuiieiiiiiiiiirieeeee et seee e e 108
[lustration 45: The python bin directory with the SCIiptS........cceeceiriiriiiriieniieeierieeeiee e 109
[lustration 46: The python SOUTCE dIT@CLOTY.......ccccvierriieeirieeriieeriieeeieeeerteeerreeeeessraeeeeessenrreeaeens 110
[lustration 47: Transfer of lib and headers before build...........c.coceeiiiiniiniiniiieeeee 111
[Nlustration 48: Inside the source directory ready for build............cccoovveeviiiniiiniiiniiicieeceeeee, 112
[lustration 49: Setting the build eNVIrONMENL...........ccociiriiriiiirienieeeeeeee e 114
[lustration 50: Create the python lIDIary.........ccciecuieieiieiiiiieciieccieecceeee e e e aee e 115

Illustration 51:
Illustration 52:
Illustration 53:
Illustration 54:

Illustration 55

Illustration 56:
Illustration 57:
Illustration 58:
Illustration 59:
Illustration 60:
: The SWIG Dase dir@CLOTY........eevuierierriierieeieeeieerieeete et e ste et e ste et e satessseesseeaee s 140
Illustration 62:
Illustration 63:
Illustration 64:
Illustration 65:
Illustration 66:
Illustration 67:
Illustration 68:
Illustration 69:
Illustration 70:
Illustration 71:
Illustration 72:

Illustration 61

Ilustration 73

Illustration 74:
Illustration 75:
Illustration 76:
Illustration 77:
Illustration 78:
Illustration 79:
Illustration 80:
Illustration 81:
Illustration 82:
Illustration 83:
Illustration 84:
Illustration 85:
Illustration 86:
Illustration 87:
Illustration 88:
Illustration 89:
Illustration 90:
Illustration 91:
Illustration 92:
Illustration 93:
Illustration 94:
Illustration 95:
Illustration 96:

Ilustration 97

IMlustration 98:

Test of the python LIDrary..........c.coeieiieniieiieeeee e 116
The Perl DAS@UIT........ceiruiiiiiiiiiieeeecee et s sae e e s saae e s s e e saaeenans 124
The bin directory with the SCIIPLS........cooiiriiiiiiiniiiieeeeeeee e 125
The perl SOUTCe AIirBCLOTY......ccccuiiiriiieiriiieinieeeriee et e et e ere e sireesere e e s s areeeesesssenas 126
: Transfer of library and headers............ccoevueeriiiiiiniiniieieeeeeeeeee et 127
Inside the source ready for build...........ccooieiiieciiiniiiieeceeeeee e 128
Setting the environment for build...........cccceeviiiiiiniiiiniiee e 130
Build the perl IDIary.......cccueoeiieiiiiiiieiieecctecee ettt esae e s e e ane e 131
Test of the perl IIDrary.......ccooieeiiieniieee et 132
TESE 10Z OULPUL....ceeuvieiiiieeiiieecie et eete et et e e sre e e tee s aeessateessateesbeeesssaessssaesnnnns 133

The bin directory with the SCIIPtS......c.ueieiieiriiiiiniieirieecieeceeceee e 141
The source directory for SWIG.........occoeviiriiriiiiniinieeteeeeee et s 142
Transfer of the library and the headers...........ccccoveeeiieiiieciiinieciie e 144
Inside the source ready for build............ccoceeriiriiiiniiiniiieeee e 145
Setting the build enVIroNMENL..........ccceiiiiiiriiiiniieeieer e e 147
Create the tcl library with SWIG.....c.cccooiiiiiiiiiiiieeecee e 148
Test the NEW tC] LIDIary.......coeuieiriiiiiiieeiiecteccee et saee e e 149
THe 10G TESUIL......eeiiiiiiieieeeee ettt sttt st sae e st e e s bt e e ssabeeesnes 150
The cygwin base directory after unpack...........cccoeeueeviierieesienieeiiecie e 163
Copy for the adapted headers...........cccooieriiiiriiriiinierieeeeeee e 164
Compile the module with makeall.sh..........ccccceerviiiiiiiiniiiie e, 165
: Time for a compile in Cygwin on MY DOX.......ccceecuiiriiriiiinieniieeierieeeeeeee e 166
Getting an administrator's Shell...........ccoevveieiiiiniieiiieececeeeeee e 167
Starting the cygrunsrv for the service Cygserver..........ccccevierveinierseenieensienneeneens 168
Create the shared memory buffer...........cccveeviieiiiiiieiieeceee e 169
And initialize the area..........cccceeereriirieiereeeee e 170
RUNNING the firSt tESt. . .iiiiiiiiieeiieieeeieeciteee ettt ettt b e e e e eaae e e e 171
Starting the reader to transfer the 10g..........ccoeveeriiiiiiiniiieeeee e 172
Stopping the reader after its dONE.........ccciieiiiiiiriieieeeee et 173
Convert from binary to human readable teXt..........ccccevvieriierviiniieriieniieeeiee e 174
THE TESULL 0G....eeieiieiiieeieeceee ettt ettt e e a e e e e e s ab e e e e s saneaes 175
The mingw base directory in a cygwin system and setting the environment......... 176
Copy of the already adapted headers............cccuerieeciienieeiiienieceecee e 177
Starting the build with makeall.sh...........ccocoiiiiniiiiiiii e 178
A crash 1anding for teSt03cccvieieeiiieiieeieecteee ettt e s v e e aae e e eeaee s 179
Setting the path for a Cmd...........cociiriiiiiinii e 180
Create of a shared mapped memory via pagefile.sys........cccocveevievieniiecciieniiencinenns 181
Initialize or the area from a CMd........ccceerviiiriiniiiiieeieeeeee e 183
Running a first test from a CMd.........c.ccocveeiiieriiieiiienieeieeecee e 184
Running the reader from a CMd........cccccevviiiniiniiiinieieeeee e 185
Using signal reader to stop the reader - from a cmd...........ccccveevueevienciieniieeieieeens 186
Using the convert from a cmd to get human readable text..........ccccceceeeveenneenneen. 187
THE TESULL IOG....eeieiieiiieeieece ettt ettt et e e a e e e e s s br e e e e e saseaes 188
Generation of the jni bridge with mingw for vanilla java..........ccccceceevenienennenncen. 189
Build of the jni bridge for MiNgW.........ccceeviiiiiiiiieieceeecee e, 190
: Test of the jni bridge with vanilla java and cmd..........ccccoceviiiniiniiinieniiieieeee 191

The TeSUIING 10...c..uviiiiiiiriieiiieeeteeee ettt e e e e e s s aaaaaeeessnanns 192

Error codes

Technical the error codes are made with int. So we use enum's, but at the interface we get an int
back.

This has the advantage that we don't have any problems to do this with the other languages, and
even the applications in C and C++ don't have problems with it. It simply works.

When it comes to use of higher level constructs an enum is still preferable. So we have also the
enum in place. Later in development I switched to use the enum's too.

In practice we have a no error code. Its 0 — an old UNIX and C tradition.

Then we have for every function a rage of ten or 20 numbers. All make a stop at the next full ten.
Positive is a minor error, sometimes simply as an all was OK but simply no data there thing.
Negative is serious. So this can only mean something went very wrong.

Best seems to use the raw int and first check for 0, then start any enum uses.

The enum is atrshmlog_error.

Now for the errors a short list. We give the enum, its value, its meaning and a rational with possible
reasons. Can be more than one.

atrshmlog_error_ok
Value 0

The Operation was successful, no error. You can simply go on.

atrshmlog_error_error
Value -1

A generic error code. Will be replaced in the next version with specific.

atrshmlog_error_error2
Value -2

A generic error code. Will be replaced in the next version with specific.

atrshmlog_error_error3
Value -3

A generic error code. Will be replaced in the next version with specific.

atrshmlog_error_error4d
Value -4

A generic error code. Will be replaced in the next version with specific.

atrshmlog_error_errorb5
Value -5

A generic error code. Will be replaced in the next version with specific.

atrshmlog_error_connect_1
Value -11

Buffer list is NULL in atrshmlog_il_connect_buffers_list.
Rational:

Parameter error, check your code.

atrshmlog_error_connect_2
Value -12

Buffer count is negative in atrshmlog_il_connect_buffers_list.
Rational:

Parameter error, check your code.

atrshmlog_error_init_thread_local_1
Value -21

The init was not successful in atrshmlog_init_thread_local.
Rational:

The init found a problem with the shared memory area.

atrshmlog_error_mem_to_shm_1
Value -31

The shared memory is not connected in atrshmlog_transfer_mem_to_shm.
Rational:

No valid connect was made — did you forget to attach ?

OR: Possible is an overwrite inside the process that nulled the pointer variable.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

atrshmlog_error_mem_to_shm_2
Value -32

The transfer buffer is NULL in atrshmlog_transfer_mem_to_shm.

Rational:

Parameter error. Check your program code.

atrshmlog_error_mem_to_shm_3
Value 31

The size is 0, no operation in atrshmlog_transfer_mem_to_shm.
Rational:

Your buffer contains no log info. This can happen when you flush buffers or stop logging for the
thread.

atrshmlog_error_mem_to_shm_4
Value -33,

The maximum size is exceeded in atrshmlog_transfer_mem_to_shm for the buffer itself.
Rational:

Your size is bigger than the maxsize for the buffer. You have an corrupted buffer in your program.
Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

atrshmlog_error_mem_to_shm_5
Value -34,

The logging was off for the thread in atrshmlog_transfer_mem_to_shm.
Rational:

The thread does not log. The init was not successful or someone has switched logging off after.

atrshmlog_error_mem_to_shm_6
Value -35,

The area safeguard was corrupt in atrshmlog_transfer_mem_to_shm.
Rational:
You have a memory overwrite for the area. Stop logging and shut down that area. At least reinit it.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

OR: It can mean you have a serious synchronization problem and need the fences.

atrshmlog_error_mem_to_shm_7
Value 32,

The logging was off for the system in area for atrshmlog_transfer_mem_to_shm.

Rational:

The system wide logging flag has been switched to off.

atrshmlog_error_mem_to_shm_8
Value 33,

The logging was final off in atrshmlog_transfer_mem_to_shm.
Rational:
The program shuts down so no more logging is allowed.

OR: Someone has overwritten the final flag, shut down the program. Set up a test to stabilize the
overwrite then. Take a debugger check macro if possible and hit down the overwrite function.

atrshmlog_error_attach_1
Value 41,

The attach was already done in atrshmlog_attach.
Rational:
The attach found a concurrent operation already made it.

Check your program code. Only one attach should be made because we do not support multiple
area.

atrshmlog_error_attach_2
Value -41,

Could not find a valid environment or file approach in atrshmlog_attach.
Rational:

You have no valid environment and no flag files set.

atrshmlog_error_attach_3
Value -42,

The cleanup could not successful made atexit in atrshmlog_attach.
Rational:

There was a problem to make the atexit for the cleanup. Check the number of functions that are
used with atexit. If you reach the system limit you have to combine functions to reduce. The module
needs at last one atexit slot.

atrshmlog_error_attach_4
Value -43,

The flag file seems to be corrupt in atrshmlog_attach.

Rational:

The flag file should contain numbers. Check this.

atrshmlog_error_attach_5
Value -44,

No flag file option for this level in atrshmlog_attach.
Rational:

You gave a flag file in a level where no flag file is allowed.

atrshmlog_error_attach_6
Value -45,

The cleanup could not successful made atexit in atrshmlog_attach.
Rational:

There was a problem to make the atexit for the cleanup. Check the number of functions that are
used with atexit. If you reach the system limit you have to combine functions to reduce. The module
needs at last one atexit slot.

atrshmlog_error_init_in_write_1
Value -51,

Buffer allocation failure in atrshmlog_init_in_write.
Rational:

The initialization ended without getting a buffer. This means normally you have an out of memory
situation.

Check for threads that do end but not give back the logging buffers to the module. You have two
buffers per thread so you can easily get an out of memory if you do start many threads but end them
without a stop or turn off.

atrshmlog_error_write0_1
Value -61,

Eventnumber negative in atrshmlog_writeQ.
Rational:

Parameter error, check your code.

atrshmlog_error_write0_2
Value -62,

Eventnumber too big in atrshmlog_write0.

Rational:
Your eventnumber is bigger than the max event locks.

The program needs bigger events and you didn't adjust the module or didn't set the max event locks
high enough.

OR: Your environment is wrong and you miss the variable to set the max event locks.

OR: You overwrote the limit flag. Set up a test to stabilize the overwrite then. Take a debugger
check macro if possible and hit down the overwrite function.

atrshmlog_error_write0_3
Value -63,

Logging off for the thread in atrshmlog_write0.
Rational:
Your eventnumber is bigger than the max event locks.

The program needs bigger events and you didn't adjust the module or didn't set the max event locks
high enough.

OR: Your environment is wrong and you miss the variable to set the max event locks.

OR: You overwrote the limit flag. Set up a test to stabilize the overwrite then. Take a debugger
check macro if possible and hit down the overwrite function.

atrshmlog_error_write0_4
Value 61,

Buffer full discard in atrshmlog_write0.
Rational:

You had a buffer full situation and your actual strategy is discard. So the log was aborted.

atrshmlog_error_write0_5
Value 62,

Logging off final in atrshmlog_write0.
Rational:
The program shuts down so no more logging is allowed.

OR: Someone has overwritten the final flag, shut down the program. Set up a test to stabilize the
overwrite then. Take a debugger check macro if possible and hit down the overwrite function.

atrshmlog_error_write0_6
Value 63,

Logging off in area in atrshmlog_write0.
Rational:

The system wide logging flag has been switched to off.

atrshmlog_error_write0_7
Value -64,

The safeguard is corrupt in atrshmlog_write0.
Rational:

The buffer you use in the program is corrupt, shut down the program. Set up a test to stabilize the
overwrite then. Take a debugger check macro if possible and hit down the overwrite function.

atrshmlog_error_write0_8
Value -65,

The area safeguard is corrupt in atrshmlog_writeO.
Rational:
You have a memory overwrite for the area. Stop logging and shut down that area. At least reinit it.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

OR: It can mean you have a serious synchronization problem and need the fences.

atrshmlog_error_write0_9
Value 64,

Logging off in area atrshmlog_write0.
Rational:

The system wide logging flag has been switched to off.

atrshmlog_error_writel_1
Value -71,

Size payload is negative in atrshmlog_writel.
Rational:

Parameter error, check your code.

atrshmlog_error_writel_2
Value -72,

Eventnumber negative in atrshmlog_writel.

Rational:

Parameter error, check your code.

atrshmlog_error_writel_3
Value -73,

Eventnumber too big in atrshmlog_writel.
Rational:
Your eventnumber is bigger than the max event locks.

The program needs bigger events and you didn't adjust the module or didn't set the max event locks
high enough.

OR: Your environment is wrong and you miss the variable to set the max event locks.

OR: You overwrote the limit flag. Set up a test to stabilize the overwrite then. Take a debugger
check macro if possible and hit down the overwrite function.

atrshmlog_error_writel_4
Value -74,

Payload too big for logging in atrshmlog_writel.
Rational:

Your payload is too big for the maximum possible size to log.

atrshmlog_error_writel 5
Value -75,

Logging off for the thread in atrshmlog_writel.
Rational:

The thread does not log. The init was not successful or someone has switched logging off after.

atrshmlog_error_writel_6
Value 71,

Buffer full discard in atrshmlog_writel.
Rational:

You had a buffer full situation and your actual strategy is discard. So the log was aborted.

atrshmlog_error_writel_7
Value 72,

Logging off final in atrshmlog_writel.

Rational:
The program shuts down so no more logging is allowed.

OR: Someone has overwritten the final flag, shut down the program. Set up a test to stabilize the
overwrite then. Take a debugger check macro if possible and hit down the overwrite function.

atrshmlog_error_writel_8
Value 73,

Logging off in area in atrshmlog_writel.
Rational:

The system wide logging flag has been switched to off.

atrshmlog_error_writel_9
Value -76,

Payload too big for logging in atrshmlog_writel.
Rational:

You have hit the maximum size possible.

atrshmlog_error_writel_10
Value -77,

The safeguard is corrupt in atrshmlog_writel.
Rational:

The buffer you use in the program is corrupt, shut down the program. Set up a test to stabilize the
overwrite then. Take a debugger check macro if possible and hit down the overwrite function.

atrshmlog_error_writel 11
Value -78,

The area safeguard is corrupt in atrshmlog_writel.
Rational:
You have a memory overwrite for the area. Stop logging and shut down that area. At least reinit it.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

OR: It can mean you have a serious synchronization problem and need the fences.

atrshmlog_error_writel_12
Value 74,

Logging off in area in atrshmlog_writel.

Rational:

The system wide logging flag has been switched to off.

atrshmlog_error_write2_1
Value -81,

Size payload is negative in atrshmlog_write2.
Rational:

Parameter error, check your code.

atrshmlog_error_write2_2
Value -82,

Eventnumber negative in atrshmlog_write2.
Rational:

Parameter error, check your code.

atrshmlog_error_write2_3
Value -83,

Eventnumber too big in atrshmlog_write2.
Rational:
Your eventnumber is bigger than the max event locks.

The program needs bigger events and you didn't adjust the module or didn't set the max event locks
high enough.

OR: Your environment is wrong and you miss the variable to set the max event locks.

OR: You overwrote the limit flag. Set up a test to stabilize the overwrite then. Take a debugger
check macro if possible and hit down the overwrite function.

atrshmlog_error_write2_4
Value -84,

Payload too big for logging in atrshmlog_write2.
Rational:

Your payload is too big for the maximum possible size to log.

atrshmlog_error_write2_5
Value -85,

Logging off for the thread in atrshmlog_write2.

Rational:

The thread does not log. The init was not successful or someone has switched logging off after.

atrshmlog_error_write2_6
Value 81,

Buffer full discard in atrshmlog_write2.
Rational:

You had a buffer full situation and your actual strategy is discard. So the log was aborted.

atrshmlog_error_write2_7
Value 82,

Logging off final in atrshmlog_write2.
Rational:
The program shuts down so no more logging is allowed.

OR: Someone has overwritten the final flag, shut down the program. Set up a test to stabilize the
overwrite then. Take a debugger check macro if possible and hit down the overwrite function.

atrshmlog_error_write2_8
Value 83,

Logging off in area in atrshmlog_write2.
Rational:

The system wide logging flag has been switched to off.

atrshmlog_error_write2_9
Value -86,

Payload too big for logging in atrshmlog_write2.
Rational:

You have hit the maximum size possible.

atrshmlog_error_write2_10
Value -87,

The safeguard is corrupt in atrshmlog_write2.
Rational:

The buffer you use in the program is corrupt, shut down the program. Set up a test to stabilize the
overwrite then. Take a debugger check macro if possible and hit down the overwrite function.

atrshmlog_error_write2_11
Value -88,

The area safeguard is corrupt in atrshmlog_write2.
Rational:
You have a memory overwrite for the area. Stop logging and shut down that area. At least reinit it.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

OR: It can mean you have a serious synchronization problem and need the fences.

atrshmlog_error_write2_12
Value 84,

Logging is off in area in atrshmlog_write2.
Rational:

The system wide logging flag has been switched to off.

atrshmlog_error_area_version_1
Value -91,

The area is not connected in atrshmlog_get_area_version.

Rational:

No valid connect was made — did you forget to attach ?

OR: Possible is an overwrite inside the process that nulled the pointer variable.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

atrshmlog_error_area_count_1
Value -101,

The area is not connected in atrshmlog_get_area_count.

Rational:

No valid connect was made — did you forget to attach ?

OR: Possible is an overwrite inside the process that nulled the pointer variable.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

atrshmlog_error_area_ich_habe_fertig_1
Value -111,

The area is not connected in atrshmlog_set_area_ich_habe_fertig.

Rational:

No valid connect was made — did you forget to attach ?

OR: Possible is an overwrite inside the process that nulled the pointer variable.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

atrshmlog_error_get_event_1
Value -121,

The index is out of range in atrshmlog_get_event.
Rational:
You have given an event false.

OR: The program needs bigger events and you didn't adjust the module or didn't set the max event
locks high enough.

OR: Your environment is wrong and you miss the variable to set the max event locks.

OR: You overwrote the limit flag. Set up a test to stabilize the overwrite then. Take a debugger
check macro if possible and hit down the overwrite function.

atrshmlog_error_get_logging_1
Value 131,

The area is not connected in atrshmlog_get_logging.

Rational:

No valid connect was made — did you forget to attach ?

OR: Possible is an overwrite inside the process that nulled the pointer variable.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

atrshmlog_error_get_logging_2
Value 132,

Area logging flag is off in atrshmlog_get_logging.

Rational:

That is OK. Someone hit the atrshmlogoff or did switch off. Some programs do that too.

OR: You have a memory overwrite in the area. Set up a test to stabilize the overwrite then. Take a
debugger check macro if possible and hit down the overwrite function.

OR: It can mean you have a serious synchronization problem and need the fences.

atrshmlog_error_get_logging_3
Value 133,

Logging final is off in atrshmlog_get_logging.
Rational:

You have switched that flag on. So no more logging is possible.

atrshmlog_error_get_logging_4
Value 134,

Process logging is off in atrshmlog_get_logging.
Rational:

No error. Your process has switched the flag to off.

atrshmlog_error_create_1
Value -141,

The ipc key was out of range in atrshmlog_create.
Rational:

This can normally only be a parameter error — you cannot use negative numbers. Or you have made
an error in the parameter handling in the program.

OR: For the mingw you tried less than 1 or more than 32.

atrshmlog_error_create_2
Value -142,

The buffer count is too low in atrshmlog_create.
Rational:

You tried to use a count lower then the limit. Is your parameter handling correct ?

atrshmlog_error_create_3
Value -143,

The buffer count is too high in atrshmlog_create.

Rational:

You tried to use a count higher then the limit. Is your parameter handling correct ?

atrshmlog_error_create_4
Value -144,

The connect failed in low level call in atrshmlog_create.
Rational:

The OS operation failed. Try a smaller area. Check for access rights. Check the errno value if your
OS supports it.

atrshmlog_error_init_shm_1
Value -151,

The area is NULL in atrshmlog_init_shm_log.

Rational:

No valid connect was made — did you forget to attach ?

OR: Possible is an overwrite inside the process that nulled the pointer variable.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

atrshmlog_error_init_shm_2
Value -152,

The shared memory id is different for process and area in atrshmlog_init_shm_log.
Rational:
You have the wrong environment to use that area.

OR: It is not initialized at all.

atrshmlog_error_init_shm_3
Value -153,

The low level init failed in atrshmlog_init_shm_log.
Rational:
For a buffer an init failed. No further info.

OR: You have eventually a problem with the shared memory — can be a problem of wrong size
calculations. Check the buffer counts used.

atrshmlog_error_read_1
Value -161,

The area is NULL in atrshmlog_read.

Rational:

No valid connect was made — did you forget to attach ?

OR: Possible is an overwrite inside the process that nulled the pointer variable.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

atrshmlog_error_read_2
Value -162,

Buffer index negative in atrshmlog_read.
Rational:

Parameter error in your program.

atrshmlog_error_read_3
Value -163,

The buffer index is too big in atrshmlog_read.
Rational:

The area has not that many buffers — did you get the area buffer count for the index limit or did you
get it from somewhere else ?

OR: You connected to an area that was created earlier with another count of buffers.

OR: The count in the area has been overwritten. Set up a test to stabilize the overwrite then. Take a
debugger check macro if possible and hit down the overwrite function.

OR: It can mean you have a serious synchronization problem and need the fences.

atrshmlog_error_read_4
Value -164,

The area safeguard was corrupt in atrshmlog_read.
Rational:
You have a memory overwrite for the area. Stop logging and shut down that area. At least reinit it.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

OR: It can mean you have a serious synchronization problem and need the fences.

atrshmlog_error_read_5
Value -165,

The buffer size in shared memory was too big in atrshmlog_read.
Rational:

That means you have the wrong maximum size. Stop logging. You have different version tools for
logging and for the reader, so you work with different module versions — at least one was changed
but not for the version.

OR: It can also mean you have a memory overwrite for the size in the area. Set up a test to stabilize
the overwrite then. Take a debugger check macro if possible and hit down the overwrite function.

OR: It can mean you have a serious synchronization problem and need the fences.

atrshmlog_error_read_fetch_1
Value -171,

The area is NULL in atrshmlog_read_fetch.

Rational:

No valid connect was made — did you forget to attach ?

OR: Possible is an overwrite inside the process that nulled the pointer variable.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

atrshmlog_error_read_fetch_2
Value -172,

The area safeguard was corrupt in atrshmlog_read_fetch.
Rational:
You have a memory overwrite for the area. Stop logging and shut down that area. At least reinit it.

Set up a test to stabilize the overwrite then. Take a debugger check macro if possible and hit down
the overwrite function.

OR: It can mean you have a serious synchronization problem and need the fences.

atrshmlog_error_read_fetch_3
Value 171,

No buffer to be processed in atrshmlog_read_fetch.
Rational:

This is OK. Most the time you will encounter in a low traffic scenario this fact. Simply skip the rest
you plan for a buffer to do here and start next test.

atrshmlog_error_read_fetch_4
Value -173,

The buffer size in shared memory was too big in atrshmlog_read_fetch.
Rational:

That means you have the wrong maximum size. Stop logging. You have different version tools for
logging and for the reader, so you work with different module versions — at least one was changed
but not for the version.

OR: It can also mean you have a memory overwrite for the size in the area. Set up a test to stabilize
the overwrite then. Take a debugger check macro if possible and hit down the overwrite function.

OR: It can mean you have a serious synchronization problem and need the fences.

atrshmlog_error_read_fetch_5
Value 172,

The fetch gave a buffer has size 0 in shared memory in atrshmlog_read_fetch.
Rational:

The operation simply didn't find a valid buffer to transfer. Could be an empty list or a size 0 buffer
itself.

No major issue.

atrshmlog_error_verify_1
Value -181,

The check found that the Area was not attached in atrshmlog_verify.
Rational:
This can be a wrong ID in the environment.

Or: The access is not given for the process and the owner.

atrshmlog_error_verify 2
Value -182,

The check found the shared memory id differs to process shared memory id in atrshmlog_verify.
Rational:
You have the wrong environment to use that area.

OR: It is not initialized at all.

atrshmlog_error_verify_3
Value -183,

The check found an area safeguard was corrupted in atrshmlog_verify.

Rational:

Best is to stop logging. Shutdown that area, make a new or at least reinit it.
Set up a test to stabilize the overwrite then.

Take a debugger check macro if possible and hit down the overwrite function.

atrshmlog_error_verify_4
Value -184,

The check found a version mismatch for area and module code in atrshmlog_verify.
Rational:
That could mean you use different versions of the module.

OR: It could mean you have a serious memory synchronization problem between processes on the
system. Switch the fences on and retry.

atrshmlog_error_verify_5
Value -185,

The check found a area buffer state was corrupt in atrshmlog_verify.
Rational:

Best is to stop logging. Shutdown that area, make a new or at least reinit it.
Set up a test to stabilize the overwrite then.

Take a debugger check macro if possible and hit down the overwrite function.

atrshmlog_error_verify 6
Value -186

The check found for a buffer that the safeguard was corrupted in atrshmlog_verify.
Rational:

Best is to stop logging. Shutdown that area, make a new or at least reinit it.

Set up a test to stabilize the overwrite then.

Take a debugger check macro if possible and hit down the overwrite function.

Statistics

The module has build in a counter array. Its made of atomics. So the counters are correct if you
don't overwrite the thing. For the write the statistics is in thread local memory to circumvent
interaction of threads when logging.

If you use them you can get an int array with them with the get statistics function.
There is a helper to comment them. It depends on a special format for the output. See atrshmlogstat.
We give here the enum for the counter positions and a small rational for its meaning.

The enum is atrshmlog_counter.

atrshmlog_counter_time_low
Value 0,

We deliver in the get function the actual click time low part.
Rational:

This is the 32 bit low part of the click time when we take the statistics.

atrshmlog_counter_time_high
Value 1,

We deliver in the get function the actual click time high part
Rational:

This is the 32 bit high part of the click time when we take the statistics.

atrshmlog_counter_attach
Value 2,

The number of calls to atrshmlog_attach()
Rational:

You should check this is only a 1.

atrshmlog_counter_get_raw
Value 3,

The number of calls to atrshmlog_il_get_raw_buffers()
Rational:

The number of allocs of dynamic memory. This should be small, best 0. Check if you have a high
count the prealloc and the count so static buffers for the module and the number of threads. Check
also if you do not give back buffers via turn of or stop.

atrshmlog_counter_free
Value 4,

The number of calls to atrshmlog_free()
Rational:

You should see her a high number if you start many threads and they are turned off or stop.

atrshmlog_counter_alloc
Value 5,

The number of calls to atrshmlog_alloc()
Rational:

The number of buffers you get from the available list. You can see if you start many non logging
threads that this is much smaller than the number of threads times the number of buffers per thread.

atrshmlog_counter_dispatch
Value 6,

The number of calls to atrshmlog_dispatch_buffer()
Rational:

The number of buffers you put on the full list. This should be the number you see in mem to shm if
you don't force empty buffers to be moved.

atrshmlog_counter_mem_to_shm
Value 7,

The number of calls to atrshmlog_transfer_mem_to_shm() Rational:
Rational:

The number of buffers you try to move.

atrshmlog_counter_mem_to_shm_doit
Value 8,

When atrshmlog_transfer_mem_to_shm() actually starts to transfer
Rational:

If you really do a transfer of a buffer. This should be for all clients the same number of buffers in
the file system or you have a shared memory problem.

atrshmlog_counter_mem_to_shm_full
Value 9,

When atrshmlog_transfer_mem_to_shm() runs into a full shm buffer system and has to wait
Rational:

You have a slow reader or the system is busy.

atrshmlog_counter_create_slave
Value 10,

The number of calls to atrshmlog_create_slave()
Rational:

This can show you if you start slaves abnormal in another place.

atrshmlog_counter_stop
Value 11,

The number of calls to atrshmlog_stop()
Rational:

The number you stop logging for a thread. This and turn off should together be comparable to the
number of threads you end or you loose log buffers.

atrshmlog_counter_write0
Value 12,

The number of calls to atrshmlog_write0()
Rational:

The number of write0 in your program.

atrshmlog_counter_write0_abortl
Value 13,

When atrshmlog_writeQ() exits because of error
Rational:

Parameter error negative eventnumber.

atrshmlog_counter_write0_abort2
Value 14,

When atrshmlog_writeQ() exits because of error

Rational:

Parameter error eventnumber too big.

atrshmlog_counter_write0_abort3
Value 15,

When atrshmlog_writeQ() exits because of error
Rational:

Logging was shut of for this thread or a init error.

atrshmlog_counter_write0_abort4
Value 16,

When atrshmlog_writeQ() exits because of error
Rational:

Error in init.

atrshmlog_counter_write0_discard
Value 17,

When atrshmlog_writeQ() exits because strategy discard
Rational:

Number of logs you lost in a buffer full situation because your strategy is discard.

atrshmlog_counter_write0_wait
Value 18,

When atrshmlog_write0() waits because strategy
Rational:

Number of buffer full waits you encounter. Should be as small as possible.

atrshmlog_counter_write0_adaptive
Value 19,

When atrshmlog_write0() waits because strategy
Rational:

Number of buffer full and adaptive waits. Should be as small as possible.

atrshmlog_counter_write0_adaptive_fast
Value 20,

When atrshmlog_write0() waits because strategy
Rational:

Number of buffer full and adaptive waits. Should be as small as possible.

atrshmlog_counter_write0_adaptive_very fast
Value 21,

When atrshmlog_write0() waits because strategy
Rational:

Number of buffer full and adaptive waits. Should be as small as possible.

atrshmlog_counter_write_safeguard
Value 22,

When atrshmlog_writeQ() exits because safeguard error
Rational:

The number of corrupt buffers. Should be 0. Check program integrity else.

atrshmlog_counter_write_safeguard_shm
Value 23,

When atrshmlog_writeQ() exits because safeguard error
Rational:

Number of corrupt area. Should be 0 . Check synchronization problems and fences .

atrshmlog_counter_writel
Value 24,

The number of calls to atrshmlog_writel1()
Rational:

The number of writel for your program.

atrshmlog_counter_writel_abortl
Value 25,

When atrshmlog_writel() exits because of error
Rational:

Parameter error negative eventnumber.

atrshmlog_counter_writel_abort2
Value 26,

When atrshmlog_writel1() exits because of error
Rational:

Parameter error eventnumber too big. Check code and max locks.

atrshmlog_counter_writel_abort3
Value 27,

When atrshmlog_write1() exits because of error
Rational:

Logging was shut of for this thread or a init error.

atrshmlog_counter_writel_abort4
Value 28,

When atrshmlog_write1() exits because of error
Rational:

Error in init.

atrshmlog_counter_writel_discard
Value 29,

When atrshmlog_write1() exits because strategy discard
Rational:

Number of logs you lost in a buffer full situation because your strategy is discard.

atrshmlog_counter_writel_wait
Value 30,

When atrshmlog_write1() waits because strategy

Rational:

Number of buffer full waits you encounter. Should be as small as possible.

atrshmlog_counter_writel_adaptive
Value 31,

When atrshmlog_writel() waits because strategy
Rational:

Number of buffer full and adaptive waits. Should be as small as possible.

atrshmlog_counter_writel_adaptive_fast
Value 32,

When atrshmlog_write1() waits because strategy
Rational:

Number of buffer full and adaptive waits. Should be as small as possible.

atrshmlog_counter_writel_adaptive_very fast
Value 33,

When atrshmlog_write1() waits because strategy
Rational:

Number of buffer full and adaptive waits. Should be as small as possible.

atrshmlog_counter_writel_abort5
Value 34,

When atrshmlog_write1() exits because of error
Rational:

Parameter error, size of payload negative. Check program code.

atrshmlog_counter_writel_abort6
Value 35,

When atrshmlog_write1() exits because of error
Rational:

Payload too big, can never fit. Check program code.

atrshmlog_counter_writel_abort7
Value 36,

When atrshmlog_write1() exits because of error
Rational:

Payload too big for that buffer. Check your reduce of size and your need for log size.

atrshmlog_counter_write2
Value 37,

The number of calls to atrshmlog_write2()
Rational:

The number of write2 for your program.

atrshmlog_counter_write2_abortl
Value 38,

When atrshmlog_write2() exits because of error
Rational:

Parameter error negative eventnumber.

atrshmlog_counter_write2_abort2
Value 39,

When atrshmlog_write2() exits because of error
Rational:

Parameter error eventnumber too big. Check code and max locks.

atrshmlog_counter_write2_abort3
Value 40,

When atrshmlog_write2() exits because of error
Rational:

Logging was shut of for this thread or a init error.

atrshmlog_counter_write2_abort4
Value 41,

When atrshmlog_write2() exits because of error
Rational:

Error in init.

atrshmlog_counter_write2_discard
Value 42,

When atrshmlog_write2() exits because strategy discard
Rational:

Number of logs you lost in a buffer full situation because your strategy is discard.

atrshmlog_counter_write2_wait
Value 43,

When atrshmlog_write2() waits because strategy
Rational:

Number of buffer full waits you encounter. Should be as small as possible.

atrshmlog_counter_write2_adaptive
Value 44,

When atrshmlog_write2() waits because strategy

Rational:

Number of buffer full and adaptive waits. Should be as small as possible.

atrshmlog_counter_write2_adaptive_fast
Value 45,

When atrshmlog_write2() waits because strategy
Rational:

Number of buffer full and adaptive waits. Should be as small as possible.

atrshmlog_counter_write2_adaptive_very_fast
Value 46,

When atrshmlog_write2() waits because strategy
Rational:

Number of buffer full and adaptive waits. Should be as small as possible.

atrshmlog_counter_write2_abort5
Value 47,

When atrshmlog_write2() exits because of error
Rational:

Parameter error, size of payload negative. Check program code.

atrshmlog_counter_write2_abort6
Value 48,

When atrshmlog_write2() exits because of error
Rational:

Payload too big, can never fit. Check program code.

atrshmlog_counter_write2_abort7
Value 49,

When atrshmlog_write2() exits because of error
Rational:

Payload too big for that buffer. Check your reduce of size and your need for log size.

atrshmlog_counter_set_slave_count
Value 50,

The number of calls to atrshmlog_set_f_list_buffer_slave_count()
Rational:

IF you need more slaves you should see this is used.

atrshmlog_counter_set_clock_id
Value 51,

The number of calls to atrshmlog_set_clock_id()
Rational:

You should see if the clock is changed. Can be a problem with the op code on the CPU.

atrshmlog_counter_slave_off
Value 52,

The number of calls to atrshmlog_set_f_list_buffer_slave_run_off()
Rational:

If you get in buffer full situations you should check if the slaves were shut off.

atrshmlog_counter_set_event_locks
Value 53,

The number of calls to atrshmlog_set_event_locks_max()
Rational:

IF you need bigger event numbers and get errors for events you should check this is used.

atrshmlog_counter_set_buffer_size
Value 54,

The number of calls to atrshmlog_set_buffer_infosize()
Rational:

If you have too small buffers you should see if you have reduced them.

atrshmlog_counter_set_wait_slaves_on
Value 55,

The number of calls to atrshmlog_set_wait_for_slaves_on()
Rational:

If you hang in cleanup and you see this is not 0 you should check your slaves are all alive and if you
kill them you have maintained the slave count.

atrshmlog_counter_set_wait_slaves_off
Value 56,

The number of calls to atrshmlog_set_wait_for_slaves_off()
Rational:

You should know if the wait as set off.

atrshmlog_counter_set_slave_wait
Value 57,

The number of calls to atrshmlog_set_f_list_buffer_slave_wait()
Rational:

IF you have a high CPU load for slaves you should see if you change the wait.

atrshmlog_counter_set_prealloc_count
Value 58,

The number of calls to atrshmlog_set_prealloc_buffer_count()
Rational:

IF you need another prealloc count you should know this.

atrshmlog_counter_set_thread_fence
Value 59,

The number of calls to atrshmlog_set_thread_fence()
Rational:

IF you need fences you should see here a small number.

atrshmlog_counter_create
Value 60,

The number of calls to atrshmlog_create()

Rational:

If you create buffers you should know this.

atrshmlog_counter_create_abortl
Value 61,

The atrshmlog_create() exits because of error
Rational:

Parameter error ipc key, check your code or environment.

atrshmlog_counter_create_abort2
Value 62,

The atrshmlog_create() exits because of error
Rational:

Parameter error for count, check your code or environment.

atrshmlog_counter_create_abort3
Value 63,

The atrshmlog_create() exits because of error
Rational:

Parameter error for your count, check your code or environment.

atrshmlog_counter_create_abort4
Value 64,

The atrshmlog_create() exits because of error
Rational:

OS error. Check the maximum available size and access rights.

atrshmlog_counter_delete
Value 65,

The number of calls to atrshmlog_delete()
Rational:

If you destroy the buffer you should know this.

atrshmlog_counter_cleanup_locks
Value 66,

The number of calls to atrshmlog_cleanup_locks()

Rational:

If you destroy the area you should know this.

atrshmlog_counter_init_shm
Value 67,

The number of calls to atrshmlog_init_shm_log()
Rational:

If you do the init internal you should be sure not to do it more than create.

atrshmlog_counter_read
Value 68,

The number of calls to atrshmlog_read()
Rational:

Old function, should not be used in normal cases.

atrshmlog_counter_read_doit
Value 69,

The atrshmlog_read() transfers a buffer
Rational:

Old function, should not be used in normal cases.

atrshmlog_counter_read_fetch
Value 70,

The number of calls to atrshmlog_read_fetch()
Rational:

The total number of read try's. If this is much more than the doit count you should give the reader a
higher wait time. Its wasting CPU else.

atrshmlog_counter_read_fetch_doit
Value 71,

The atrshmlog_read_fetch() transfers a buffer
Rational:

Number of transferred buffers with a size greater 0 — should be identical to the count of bin files in

the programs write file tree.

atrshmlog_counter_verify
Value 72,

The number of calls to atrshmlog_verify()
Rational:
IF you have a high verify count you should check if someone has made a sick joke and does always

a verify before a log. That's a performance no go.

atrshmlog_counter_logging_process_on
Value 73,

The number of calls to atrshmlog_set_logging process_on()
Rational:

IF you have less than off you should check why you shut off so much.

atrshmlog_counter_logging_process_off
Value 74,

The number of calls to atrshmlog_set_logging process_off()
Rational:

If you have more than one you should check this if you loose valuable log.

atrshmlog_counter_set_strategy
Value 75,

The number of calls to atrshmlog_set_strategy()
Rational:

If you have a count here comparable to the number of threads you should consider to change the
default instead for the program.

atrshmlog_counter_set_strategy_process
Value 76,

The number of calls to atrshmlog_set_strategy_process()
Rational:

IF you have here more than one you should consider to rethink what is your program wide default.

atrshmlog_counter_set_event
Value 77,

The number of calls to atrshmlog_set_event_on()
Rational:

IF you have a high count here check why you cannot live with the default init you have choose for
the events.

atrshmlog_counter_set_env_prefix
Value 78,

The number of calls to atrshmlog_set_event_off()
Rational:

If you encounter problems with use of environment or flag files it could be you change the prefix.

atrshmlog_counter_exit_cleanup
Value 79,

The number of calls to atrshmlog_exit_cleanup()
Rational:

IF there are more than one its likely you have a problem with atexit functions.

atrshmlog_counter_flush
Value 80,

The number of calls to atrshmlog_flush()
Rational:

If you othen flush you slow down the logging and so the threads.

atrshmlog_counter_logging_process_off final
Value 81,

The number of calls to atrshmlog_set_logging_process_off_final()
Rational:

IF you have logs not receiving its possible you have stopped logging else in your system.

atrshmlog_counter_turn_logging_off
Value 82,

The number of calls to atrshmlog_turn_logging_off()
Rational:

You switch threads off in your program. That's OK if the thread does not do itself a stop. So take the
number of threads you create, and check the number of turn off you make. Should be comparable.

If not you could have memory problems if the threads log.

atrshmlog_counter_init_in_advance_on
Value 83,

The number of calls to atrshmlog_init_buffers_in_advance_on()
Rational:

If you switch the advance on you loose some time with memset and calloc instead of a malloc.

atrshmlog_counter_init_in_advance_off
Value 84,

The number of calls to atrshmlog_init_buffers_in_advance_off()
Rational:

If you switch the advance off you can encounter problems on mingw and also cygwin. So check
why you switch it off.

To get the thread local statistic it was transferred with the log buffer via reader into conventional
space. You have a sequence counter so the latest version with the highest sequence is the real thing.
Check the output of the converter for it.

The conveter can deliver the statistics if you use three parameters. The third is then a file that the
converter creates to get the statistics in text form.

You then can use the atrshmlogstat if you want to see for the meaning.

Its only the vital runtime dependent stuff. The error counts are still in the main statistics.

Strategy

There is no unlimited number of buffers for a thread. So we have to accept that it is possible that we
have all buffers to log full when we enter the check for a free one.

So we have to wait.
OK, that is no perfect world, and so waiting is also a bad thing, but we simply have to.
When it comes down to this we have some options how to do this.

So we can set the default for the process, and then every thread gets that in its init and uses from
then on the own value.

If you have a different behavior you need you can set the thread strategy. If you think the program is
better served with it you can set a process strategy that differs too.

So here are the strategy values. Its an enum after all, but you can use the int instead.

The enum is atrshmlog_strategy

atrshmlog_strategy_discard
Value 0,

Rational :

If you have to do things very fast, but also need a log if possible, but cannot wait the rough 250000
up clicks in case you have a buffer full you can discard the log. This will cost only the time to find
that you have to — rough 20 to 30 clicks — and that its.

So if you have for example a garbage collector and you need it to run but want have info if possible
the discard would be a good strategy.

atrshmlog_strategy_spin_loop
Value 1,

Rational:

If you have a single or near single thread application, and you want to log at all cost, but need best
response time — then the spin lock is an option. It will burn a CPU then. But you get a log — no
discard — and you get the best response possible.

atrshmlog_strategy_ wait
Value 2,

Rational:

This is a simple default. You estimate a wait time. And so you set this in here. There is a default and

you can set it if you need different.

atrshmlog_strategy_adaptive
Value 3,

Rational:

This is using the last transfer time for a buffer. So you have the last for it in the module. You use a
rough calculation to get it to nanoseconds. Then you scale it down with the number of buffers. So
you get an average wait time this way — assuming its a more or less sequential thing.

This is a self adjusting thing, so it can be very good or get bad in case you have a peek time far from
usual. But it is calculated always against the very last time you encounter. So its most up to date,
and if you encounter heavy CPU loads its perhaps the best of all.

atrshmlog_strategy_ adaptive_fast
Value 4,

Rational:

See the adaptive first. Now for this on the difference. You encounter peaks and want to reduce the
effect. So this one make an additional cut down of factor 2. It comes faster back to the test this way.

atrshmlog_strategy_adaptive_very_fast
Value 5,

Rational:

See the adaptive first. Now for this on the difference. You encounter heavy peaks and want to
reduce the effect. So this one make an additional cut down of factor 10. It comes much faster back
to the test this way.

Environment setting

The module makes use of at least one environment variable at the initialization.

The name is determined by two things. The first is the prefix buffer content. The second is the
define ATRSHMLOGENVSUFFIX.

The prefix is first an empty buffer. No content. Its max 128 chars. The content can be set in advance
before first use with a setter. So there you are then with your own prefix. Next is to first try to read
in a value. If not already set then the prefix is first default set with the define
ATRSHMLOG_ENV_PREFIX.

Then a first lookup is made to find if there is an environment variable with that name. If there is
one, its value is used to refill the prefix buffer.

This sounds a bit overdue.

You have a default and that can be set in the program before first use — so you are in for your name
here.

OK. You can also change the define — its open source after all.

If you cannot do the setter — perhaps its not you that makes the attach, instead another company
programmer in his code — or even a contractor — then you can also likely not change the define for
the “ No changes to alien code “ policy

Then you can resort to the setting of the ATRSHMLOG variable and you are in with your naming.
So from this moment on all look ups are made with the prefix and the suffix is simply appended.
The prefix cannot be changed after this.

For the first lookup in the module its natural to be the lookup for the shared memory buffer's ID of
the system. If its the mingw you have here the index in the hidden naming array, for the posix
systems the shared memory id of the created buffer.

After that access is made you get a check for it. If its not there the thing tries to switch to the so
called flag files. And that is then used for all accesses.

They have the same name as the environment variable — so all capital letters. And a suffix of
“.TXT”. So you can set the values in case you cannot use the environment variables by using the
flag files. The files are read in for most cases and the content is expected to be the first and othen
only thing.

A plain number.

So what follows here is the list of environment variables that the module uses. The list is also
spanning the reader. So you should be able to set the configuration of the module with it without
trying to check the source code.

There are most the time simple settings, a flag thing with 0 and 1 or a simple number.

The exception is the event setting stuff. This uses a list approach. We use here the default names for

the full variable. The prefix is ATRSHMLOG as you can see in the internal header.

ATRSHMLOG

Value : The new prefix.
Define : ATRSHMLOG_ENV_PREFIX
Rational:

You can redefine the prefix this way without changing the code. Set ATRSHMLOG=hugo for
getting hugo to be the new prefix.

This works only for the first access to the prefix with atrshmlog_get_env.

After this access the resulting prefix is fix and cannot be changed.

ATRSHMLOG_ID

Value : A number that defines the used shared memory buffer for attach.
Define: ATRSHMLOGENV SUFFIX
Rational:

We use an environment here to get in the attach the ID of the shared memory buffer. In case of
mingw the index for the name array.

The ID is on all systems I know a positive number. It can be small like 65536 in cygwin or
something bigger in the rest of the posix systems.

ATRSHMLOG_COUNT

Value: A number.
Define : ATRSHMLOG_BUFFER_COUNT SUFFIX
Rational:

The number of buffers you have in the area. We need this value only for mingw. Its an interim
solution for now.

Some of the programs that use a parameter for the count of buffers have been altered to use it too.
But not all. So check the program code in doubt.

Area buffers are rough half an MB in size. So on many systems you are limited for the total size of
the area. Keep this in mind if you try bigger numbers.

ATRSHMLOG_INIT_IN_ADVANCE
Value: A flag 0 or 1.

Define : ATRSHMLOGINITINADVANCESUFFIX

Rational:

You can prepare the buffers in advance with a memset 0 and the dynamic allocated buffers with a
calloc. This helps to shift the access time from logging to the initialization phase of the buffers. For
the static buffers its done in attach. For the dynamic allocated buffers in the raw get.

ATRSHMLOG_STRATEGY

Value: A number from 0 to max for the enum's of atrshmlog_strategy.
Define: ATRSHMLOGSTRATEGY SUFFIX

Rational:

You can set the default strategy for the process in attach this way.

The strategy is then used in the thread local init to init the thread strategy.

ATRSHMLOG_STRATEGY_WAIT_TIME
Value : A number (100000 at best, more 250000 or even 750000).

Define : ATRSHMLOGSTRATEGYWAITTIMESUFFIX
Rational:

For the wait time in nanos you use this value as default. IF you use the wait strategy for the buffer
full situation you can set it else.

If you use the adaptive the default click time is set to this, but normally the first real transfer wins
over it — its only there to circumvent a possible 0 value...

ATRSHMLOG_DELIMITER_VALUE

Value : A number resulting in a new C char value from 0 to 255 at least.
Define: ATRSHMLOGDELIMITERSUFFIX
Rational:

You can set the delimiter char for the atrshmlog_write2 function for the concatenation of the argv
strings.

ATRSHMLOG_EVENT_COUNT_MAX
Value : A number (at least 10000)

Define : ATRSHMLOGEVENTCOUNTSUFFIX

Rational:

You can set a new max size for the event flag buffer. This is also the maximum of the valid event
values.

If you need a bigger event flag buffer and cannot change the default the this a thing you can use —
do it as an interim. Your program will likely have problems when you forget to set it if you made
bigger event numbers.

ATRSHMLOG_BUFFER_SIZE

Value: A number from 16 K up to the max value.
Define: ATRSHMLOGBUFFER_INFOSIZE_SUFFIX
Rational:

The buffer size for the payload log is a define and fix for the static buffers. For the dynamic buffers
it can be reduced.

If you have a program need for dynamic allocated buffers and you don't need them to have big log
entry's you can reduce this to spare memory. Your dynamic allocated buffers will be of this size for
the payload.

So this is more an interim. Only if you cannot switch to static buffers its needed. And only to
reduce.

ATRSHMLOG_PREALLOC_COUNT

Value: A number.
Define: ATRSHMLOG_INIT PREALLOC_COUNT_ SUFFIX
Rational:

The number of buffers to fetch in the low level allocation for the dynamic allocation call. So you
only pay with one alloc for this many buffers.

But be sure you first tried the static buffer solution — that's always preferable.

And keep in mind that big allocs take time — you will have a wait for the first thread that has to do
the thing.

ATRSHMLOG_SLAVE_WAIT_NANOS

Value: A number.
Define: ATRSHMLOG INIT BUFFER SLAVE WAIT SUFFIX

Rational:

The number of nanos we wait if the slave finds no buffer on the full list. So for this time the process
can put buffers on the list, but the slave is simply off.

This reduces CPU load in case you have a low throughput logging.

Times in order of a million could be too big, so try something in range of the memcopy times for
the buffers. That should be OK.

ATRSHMLOG_SLAVE_COUNT

Value: A number.
Define : ATRSHMLOG_SLAVE_COUNT_ SUFFIX
Rational:

We start in the attach and if we encounter a fork clone in the first write the slave threads. So we can
set this to a reasonable number.

For a program that does only some logging and then ends normal in exit you can set it to 0 so no
slave is active and the cleanup alone transfers the log — spares most CPU time.

The default is to set it to 1 for a low throughput program. It cost rough 1.5 million clicks to fill a log
buffer with small payload logs — say 10 to 15 byte per log. So its about 8 to 10 threads when a slave
can become to slow to do the transfer to memory for a fast system. For a higher number of threads
or a slow system can be different.

So you can set the number that is used there — and only there. Setting it after has no effect. You have
then to start them by yourself with the create slave function.

ATRSHMLOG_WAIT_FOR_SLAVES_ON
Value: A flag 0 or 1.

Define : ATRSHMLOG_WAIT_FOR_SLAVES_SUFFIX
Rational:
In the cleanup at exit of a normal ending program you can wait for the slaves to stop.

To do this the cleanup switches the slave run flag off. So the slaves — if active — will hit this in the
next iteration. Most likely this is in some microseconds after you made the flag.

In case you want to wait for the cleanup then for the slaves to finish you can set this flag.

Then the cleanup waits till the number of slaves is 0 — but this has a caveat: the number is only
maintained for regular ending slaves.

So if you play games with slaves, like kill the thread or similar , you have to maintain the number
with a helper function.

If you set the flag but have not ending the threads or a false count the thing will hang here. And so

you simply loose the log that is still in the buffers when you have to kill the program.

So consider be warned.

ATRSHMLOG_CLOCK_ID

Value: A number from 0 to max of clocks getter in atrshmlog_get_clocktime.
Define: ATRSHMLOG_CLOCK_ID_SUFFIX
Rational:

You can get one of the clock functions to deliver the time. If you try others it can be they are not
working on the system in place — worse can be an illegal instruction trap.

So if you need a better clock getter its possible to check this in a test program.

For the module the simplest getter is used normally, but you can change this with a define if you
have found a better.

ATRSHMLOG_FENCE_1to 13
Value: A flag 0 or 1.

Define : ATRSHMLOG_FENCE_1 SUFFIX TO ATRSHMLOG_FENCE_13 SUFFIX
Rational:

We have in this version no fence active by default. The Intel and AMD systems that are covered
simply don't need them as far as I have tested.

If you need fences — or so called memory barriers — then you can switch them on.

To see for the effect can be tricky, so be prepared you have to compile in some check stuff and then
can see if it works.

For the fences see the chapter about the things.

ATRSHMLOG_LOGGING_IS_OFF_AT_START
Value: A flag 0 or 1.

Define: ATRSHMLOG_LOGGING_OFF_SUFFIX
Rational:

Sometimes you need to start with the log off. So this is the switch to do it. If you don't set it the
module will start with logging on.

This is needed in tricky initialization situations when you simply don't know the correct order of
execution. It is rare in C, but for C++ this can be very nasty. So if you decide to make the attach
somewhere but cannot control otherwise its possible to hold logging till you are ready.

ATRSHMLOG_EVENT_NULL

Value : Not relevant: If set it switches on. If not set off. Same for the file : If exists its on, if not
exists off.

Define: ATRSHMLOGEVENTNULLSUFFIX

Rational:

You can switch from positive logic for the event initialization to negative logic.

In positive logic the events are set to on — 1 — for default. In negative logic they are set to off -0 .
So you decide if you start with logging events or not at all.

This is only of small help if you not set the events then you need to on — or to off — individual.

To do this you can use the function or the initialize via environment.

ATRSHMLOG_EVENT_ONOFF

Value: A vector of event numbers.
Define;: ATRSHMLOGEVENTONOFFSUFFIX
Rational:

You can set events different than the default with this. See also ATRSHMLOG_EVENT NULL for
this. In positive logic you switch the events off then. In negative logic you set them on.

The vector is in case of the file given by a serious of numbers. Every number is one event index and
the number must be within range from 0 to max index.

For the environment we use a C sting with the numbers separated by ":' as in UNIX land. This is
true also for mingw. Again a number has to be in range of 0 to max index.

So you can negate the logic, and then switch on only individual events. That's handy if you need
only some logging's at all.

The other way you can switch of a group you actually don't need this time. Also handy.

Only one of the things is possible. So you can only do this one time. Switching has no effect after
the attach made the event init.

ATRSHMLOG_FETCH_COUNT

Value: A number.
Define : -

Rational:

The number of threads the reader c and d start to fetch from the area.

This is per default half the number of buffers. This is in theory the high throughput scenario. In
practice it can be reduced to the number of slaves in the programs writing.

Spare CPU this way.

ATRSHMLOG_WRITE_COUNT

Value: A number.
Define : -
Rational:

The number of writes the reader ¢ and d start. This is for the number of fetchers a three times high
count. So you get a bunch more writes than fetchers.

If you still encounter a blowing reader its time to check if you have a high amount of writes of
buffers. Then you must raise the number of writes to keep up with the fetchers and slaves. Depends
on the speed of write in last consequence, so I cannot give you a better default than make it three
times bigger.

ATRSHMLOG_ALLOC_ADVANCED

Value: A number .
Define:; -
Rational:

If you have a high amount of logging and you have trouble to keep up with the reader from the
beginning on you can set this to allocate additional buffers for the reader in advance to make it till
the first writers have done the job. You start in the reader d for now with 1024 buffers. You get 1024
next buffer for an loop with the alloc advanced. Not one, but 1024.

So if you have a thing that needs let say a short lifetime but about 3000 buffers you would need no
write, but fetchers and at best 4000 buffers. No overhead and CPU for writers. Fetchers is another
story. But enough buffers to catch the log.

Then when the reader stops it writes down all — after your test. So the system can make it without
file system io at all (if it isn't for the paging ...).

If you have the need for more buffers keep in mind this is a per 1024 switch or you can run out of
memory easily.

Meaning: small numbers are GB ...

Functions to use before attach

The attach is also the initialization of the module. You can set the values for some flags and default
values by environment. You can set some of the values alternative before you attach with the
functions that follow. For the layer simply check the corresponding thing.

If you use a setter here you have to keep in mind the attach will have the last word for it — it simply
ignores if you have a environment too the previous value.

If a thing is initialized more complex you can only change after the attach. This is true for the
events. So don't set them before attach. The settings will not make it.

atrshmlog_set_env_prefix

You can set another prefix. This MUST be done before attach — after it simply is not used.

atrshmlog_set_event_locks_max

You can set the new size of the event flag buffer to use bigger events. Still init is done in attach, so
you can not set events in advance.

atrshmlog_set_buffer_size

You can reduce the size for buffers for the dynamically allocated buffers here.

atrshmlog_set_f_list_buffer_slave_count

You can set the number of slaves to start.

atrshmlog_set_clock_id

You can set the id for the clock function to use in the atrshmlog_get_clocktime.

atrshmlog_set_wait_for_slaves_on

You can set the flag to on.

atrshmlog_set_wait_for_slaves_off
You can set the flag to off.

atrshmlog_set_f _list_buffer_slave_ wait

You can set the wait time for the slaves .

atrshmlog_set_prealloc_buffer_count

You can set the number of buffers to alloc in one low level alloc here.

atrshmlog_set_strategy process

You can set the buffer full strategy default of the process here.

atrshmlog_set_thread_fence_1 to atrshmlog_set_thread_fence_13

You can set the flag for use of the fence here.

atrshmlog_set_init_buffers_in_advance_on

You can set the init in advance to on here

atrshmlog_set_init_buffers_in_advance_off

You can set the init in advance to off here.

For other functions you can call them too, but this makes only partly sense to me.
Of course you can call the getter's if you need.

The exception is the get event. This makes only sense after the init which is done in the attach.

Alphabetical Index

AJUSTIMENL. ...ttt ettt se e st e st e et essbessb e e s st eessaesssesaseesaseessaessseaesnsaeesnsaessnnseeennns 193
area.....13f., 20ff., 29, 42ff., 46, 65, 68, 77, 82, 97, 99ff., 116, 132, 149, 170, 183, 195f., 198ff., 204,
206f., 211ff., 215, 222, 224, 226f., 231, 233ff., 248ff., 253, 263, 268ff., 273, 275, 2771f., 290, 299,
306, 312

AATBQ..ccc et eeee e eeeta e e e et e e e e e e e e e —at e e e e abae e e e aaaaeeanaaaaeeeaaaarrarraaaaaaeaaeeaaann 279, 284, 306
AREA. ..ottt et e et e e e —— et e e ——— e e e et ——teeea———aeeaa——teeeaaaareeeanaararraraaraaaaaaens 30
atrshmlog....... 20, 23, 30, 41, 49, 56ff., 63f., 70, 183, 195f., 204f., 225ff., 238, 240ff., 248ff., 2671f.,
306f., 310, 313f.

ATRSHMLOG.......ccoiiiieeeeeeee et 29ff., 37, 50, 67, 84, 93, 98, 1571., 196, 230, 305ff.
atrshmlog_acqUITe_DUFTEI.........couiiiieceeeeeeeee ettt re e s ebeeteesnseeeas 245
ALTSHMIOZ_Al10C.. .. e ciiiiieiiieieeee ettt sttt e st e s be e st e e asa e e sstaeeeasaeesnsees 244
ATRSHMLOG_ALLOC_ADVANCEDcoiiiiteeee ettt eeeaee e eeaae e e e e e e e e eeseeassssaaaseeeees 312
AtrShMIOE_AttACK. .. .eiiiiieieeiieteee ettt sttt e st e s be e bt e s sbe e saesabaeseesnseean 238
ATRSHMLOG_BUFFER_SIZE.......oooiioiiiii ettt eetee e ettt eeeaaeeeeeeaase s s e asassasaaseeeeeeas 308
atrshmlog_buffers_prealloCed...........c.ooiiiiiiiiirieeee ettt s e e 252
atrshmlog CleanUpP_1OCKS........ciicuiiiiiiiiciieete ettt e st e e sae e e e e e s saaeeeessnnnes 241
ATRSHMLOG_CLOCK _ID.....ctttiieeiteeeeeeieeeeeeeteeeeeeeteeeeeeraeeeeeesseeeeeesseseeenssesesesssssesesssssssssseeens 310
ATRSHMLOG _COUNT ...ttt ettt ettt ettt eeate e e eeatteeeeeaaaeeeeessaeeesessseeesensaseesenssssaseeeeeens 306
ALTSNIMIOE_CTALE. ... eeeutiiiieeiteeteett ettt ettt ettt e st esae e st e e beessb e e st e sase e saessseessesnsaenseesnseean 241
AtrSNIMIOE CTEALE_SIAVE....cccuuiiieiiieeiieeiee ettt ettt s e e e e e e st e e s teeesbeeessseeessssbaaeesssnssnaaesannns 250
atrshmlog_decrement_S1avVe_COUNL........c.cueeiuiirierrieenierieesieeteente et esireseeestesbeessbaeessanneessnsaeesnnns 251
ATSNIMIOE EIELE....cccueiieeiiieeie ettt et e e e e e e e s be e e s beeesseeeessteeesaseeenssaeenssaaens 241
ATRSHMLOG_DELIMITER_VALUE.......ooioittiiieeteee ettt eeetee e eeereeeeeetaeeeeeennnnnaneaeeeeas 307
atrshmlog_dispatCh_DUTET..........coouiiiiiiiececee et e e eae e e 245
atrshmlog_eITor_area_COUNT_L......c.cooieeiiiirierieeiieeieesiteeieesite st e satesbe et e sbeessaessseesaaessseessnesssnseesas 278
atrshmlog_error_area_ich_habe_fertig 1.........cccociiiiiiiiieiiiiiceceeee ettt 279
atrshmlog_eITor_area_VeTrSION_L.......coceerieriiiinieniiienieeieesteeie et esbeesaeesbeesaeessbeessaesaseesseesssnsaeesnns 278
atrshmlog_ eITOr_attaCh_T.....cccuuiiiiiiiiiiieeiie ettt e e s e e e s ae e e s e e e s ataeesaseeessnaeaeanns 270
atrshmlog_eITOT_attaCh_2.......cccuiiriiiiiiiiieiieeieet ettt sttt s et e st e e seesbeesatesbeessnessnnsaeeas 270
atrshmlog_ eITOr_attaCh_3......ccuuiiiiiieiiiieeiee et ree et s e e e s te e e s teeesaaeeesaseeessnaeaeans 270
atrshmlog_eITOT_attaCh_d........ccooeiiiiiiieieeieeieet ettt ettt et e st e st e st e e saesbeesatessbeessnesssnsaeeas 270
atrShmlog_ eITOT_AttACh_5....ccccuiiiiiieiiiieeeiee ettt e s e e e s te e e s taeesaaeeessseeessnaeaeanns 271
atrshmlog_eITOT_attaCh_B.......cocuiiriiiiiieieiiieeieeteete ettt ettt et esbe e st e e beessnesssneaeeas 271
atrShmlog@_ eITOT_COMMECT_L.....iiiiiiiieiiieiiieeeieeesiee et e et e eete e et e e sbeeesbeessasaeesssaessseesssaessssneeeennnes 268
atrShmlOg_eITOT_COMMECT_2......ceiuiiriiriiieeieeniteeteestesteesitesteesteesateesseesssesssaesasaesseesssessseesseesssnseesns 268
AtrSNIMIOE EITOT_CTEALE_L....iieiiieeiieeiiieeeieeeetee et et eerte e e stte e st e e e be e e s baeessaaeesstaeesasaeensseaenssneeaeanns 280
AtrShMIOE_EITOT_CIEALE_2......eiiuiieeiieeiieeieeiteeieesit e et et e ste e ttesaeesstessbeesstessseesssesaseenstesssaesssessssseenns 280
AtrSNIMIOE EITOT_CTEALE_3....ciiiieeeiieeiiieeeieeeete e et e et eesteestteeeateeebeeesbaeesssaeesssaeesssaeensseasnsssaeesanns 280
AtrShIMIOZ_EITOT_CIEALE_4......eeiuiieeiieeiieeieeiteeie et ste et e steesttesteesatessbeestessseesssessseesstesssaesssesssssaenas 281
E 0w 0100] (oY eIy) S <) 0 0] F PRSP SRUSRRPRP 267
ALTSHIMIOZ_EITOT_EITOTZ.....ceutieeiieeiieeieeiteete et e e it et eete et esteesaeesabeesbaessbeessaesasaestessseessesnsaenseessseean 267
AtrSNIMIOE_ EITOT_BITOT3......ceciieeiiieeeiteeeieeeett e et e et eseateessbte e et eesaaeessaeesssaeessseeensseesnssaeensseesnssaeens 267
ALTSHIMIOZ_EITOT_BITOIceutiieiieeiteeteeiteete et e et e st e e bt et e s bt esae e st e e sbeessbeesaesaseessaessseessesnsaenseessseean 267
E 0w 01001 (oY oA eIy) S <) 1 0] s JOO PRSP STRUSRRPRP 268
atrshmlog_eITOT_GEt_EVENE_L.....ccccuiiiiiieieiiieeieeteeie ettt et et e st e et e s beesatessseesaaessseessnesssnsaenas 279
atrshmlog_error_get_lOZGING_ 1......ccccueiiiiieiiiieiieeeiee et et e et e ere e steesbeeesbeeesaaeeeeeessnsaaaessnnnes 279
atrshmlog_error_get_lOZGING 2.......cccovciiiiiiriiiiieeieeiteete ettt ste s ste e s te et e stessbeeesabeesssneesnans 279
atrshmlog_error_get_lOZGING_3.......cccuiiiiiiiiieiiieeeite et erte e ere e e ste e st e e sbeeesaaeeeeeessnnsaaaessnsnnes 280
atrshmlog_error_get_lOZGING 4.......c.coocieeiiiiriiiiieeieee ettt et re st s e et e st e sebe e e snbeeessneeenans 280

atrshmlog_error_iNit_iN_ WITEE_ L......iiiiiieiiiieeieeeieceeite ettt ere e sea e ste e e sae e e s reessaseessnseesnnneeaennns 271

atrshmlog_error_init_ShIM_ 1......cccooiiiiiiiiiiee ettt e e s e e 281

atrshmlog_error_init_ShIM_2........ccociiiiiiiiiieccceece et be e s are e e e s s s taaeeesennnns 281
atrshmlog_error_init_ShIM_3........cooiiiiiiiiie et e e e 281
atrshmlog_error_init_thread_l10Cal_T........ccoovuiiriiiiiiiiieieeeteeeee et ere e s eaae e e e e 268
atrshmlog_error_mem_t0_SHIM_T.......ccoiiriiiiiiiiieeiieieetee ettt ettt s 268
atrshmlog_error_mem_t0_ShIM_2........cccciiiriiiiiiiiiiieciecceeete et e e ee e s sate e s saaeesaaaee s 268
atrshmlog_error_mem_t0_SHIM_3.......ccciiiiiiiiiiieeieeee ettt et s 269
atrshmlog_error_mem_t0_ShIM_4........cccciiiriiiiiiiiiiiieceece ettt e e ee e s sate e s saaeeenaaaee s 269
atrshmlog_error_mem_t0_SHIM_5.......cooiiriiiiiiiieiieeeeeeet ettt s 269
atrshmlog_error_mem_t0_ShIM_6........ccccuiiiriiiiiiiiiiiieeeeeeeetee e e s see e s saae e e anaeeas 269
atrshmlog_error_mem_t0_SHIM_7.......cooiiriiiiiiieeeeeetee ettt ettt et s 269
atrshmlog_error_mem_t0o_ShIM_8.........ccciiiriiiiiiiiiiieeeeeeecee e ee e e et e e saaee s 270
AtTSHMIOZ_EITOT_OK....eiiiiiiiiiiieieet ettt st ettt e e st e e ba e e ssba e e e sanaeeenaee 267
atrShmMIOg_ eITOT_TEAM_L......viiiiiiiiiieieiieeeiee ettt st rte e st e e e e e e s aee e s staeeeessnbaaeessnsnssnaaesennns 281
atrsShmlog_eITOT_TEAM_2.....cccuiiiuiiiiiiieeieeteete ettt ettt et s bt et e st s bt e e s s abbeeesnbaeeesasaeesnanes 282
atrShmMIog_eITOT_TEAM_3.......ciiiiiiiiiieiiiieite ettt et s e e et e e s aae e sstaeeessssbaaeessesnssnaeesannnns 282
atrshmlog_eITOT_TEAA_4.....cccuiiiiieiieieeieeee ettt ettt et s bt et e st s bt e e s s bbeeessbaeessasaeesnanes 282
atrShmMIOg_eITOT_TEAM_S......veiiiuiiiiiiiiiiieieite ettt et s st e e st e e s ate e s stae e e s sssbaaeessesnssnaeesannnns 282
atrshmlog_error_read_fetCh_T........cooi it e 283
atrshmlog_erTor_read_fetCh_2.........ooiiiiiiiieeieee et e e e aa e e e 283
atrshmlog_error_read_fetCh_3.........ooiiiiiiiie et 283
atrshmlog_erTor_read_fetCh_d.........ooviiiiiiieeieeeeeee ettt e e et e e e aa e e e 283
atrshmlog_error_read_fetCh_S........cooiiiiiiiieee e 284
AtrShMIOG_eTTOT_VETITY_ L..iiuiiiiiiiiieieeeieciecete ettt ettt et e e te st eebeessaeebeesssaesseesssaeasnns 284
atrshmlog_eITOT_VETITY_2...c..iiiiiiiiiiiieiectee ettt ettt sttt et et e e st e sbe e neae s e 284
AtrShIMIOG_ETTOT_VETITY_3...c.eiiiiiiiiieiieeiecteeete ettt ete et et ta e e te e st e e beessaesbaesssaenseenssaeasnns 284
atrshmlOog_eITOT_VETITY_.....ooiiiiiiiiieieeee ettt sttt e st s be e st e s b e e s naeesaes 285
AtrShIMIOG_ETTOT_VETITY_5..ecueiiiiiiiiiieiieeiecteeee ettt ettt ettt e et e e beessaeebeessaaesseesssaaasnns 285
AtrShmMIOG_eITOT_VETITY_B...c.ueieiiiiiiiiieieciee ettt sttt et s be e st e s e e naeesaes 285
atrShmlog_ eITOT_WTILEO_L....cccuiiieiieeeiiieeeieeeetteeeteeeete e esre e sttt e st e e s teeesbeeessbeessseaesnssaeesssssnnaaessnnnnes 271
atrshmlog_eITOT_WITTEO_2......coiuiiiiiiiieeieeriteeie ettt ettt e st et e s te et e st e e sseesabeessaessanneessnsneeenans 271
atrShmIog_ eITOT_WTILEO_3....ccuvieiiieeeiieeiiie ettt e et e et e et e e s tte e s e e s sbeeessteessseaessssaeesnssssnaeessnnnnes 272
atrshmlog_eITOT_WITTEO_Z......cocuiiiiieiieeieeiteeie ettt ettt e st e st s bt e bt e st e e bt e sbeessteesasneessasneesnans 272
atrShmIog_ eITOT_WTILEO_S....ccuiiiiiieieiieeiiieesiee et cete e erre e ettt e e e e st e e s teeesabeesssseessssaeessssssaaaessnnnes 272
atrshmlog_eITOT_WITTEO_6......coouiiriieiieeieeiieeieest ettt ettt et st e bt e st e e saaesbeesaaessasneessasneesnans 272
AtrShMIOE_ EITOT_WTILEO _7...eeieiieeiieeeiieeeieeestte et este e e sre e et e e site e s sae e e s baeessbaeesssaessssaeessnsssaaaessnnses 273
atrshmlog_eITor_WITTEO_8......cociiiiiiiieiiieiieeieest ettt ettt et et e et e st e e bee s s bae e s abneeenans 273
atrshmlog_ eITOr_WTILE0_O....ccuviiiiiiiiiieeeiie ettt ettt s e e st e e s te e e sabeesssbaesssaaeessnsnaaaeeesnnnnes 273
atrshmlog_eITOT_WITTEL_L..icuiiiiiieiieiieeieeriteeie ettt ettt s e e st st et e st e e bt e st e e baeesasaeessnsneesnans 273
atrshmlog_ erTOr_WITte1_T10......uiiiiuieieiiieieiieeeieeerieeeete et e et e e et e e st e e s beessabeesssbaessseaeesnsnssnaaessnnnnes 275
atrshmlog_eITOr_WITTEL_T11...ccuiiiiieiieiieeie ettt ettt e ste e st e et e st e s sbe e s st e e e s sbeessnsnaesnans 275
atrShmIog_ eITOT_WTILE T _12.....uiiiiiieiiiieeiiieeeiee et e eete e et e et e e e tteeste e e sareeessbeesssbaessssaeesnssssaaaessnnnses 275
atrShmlOog_eITOT_WITTEL_2..c..uiiiiiiiiiiiieeieeiteete ettt ettt et et e st et e st e e sae e st e esbaeesasaeessasaeesnnns 273
AtrShMIOE_ EITOT_WTILE T _3...iiiiiieiiieeiiieeeiteeetee et et e e te e et e e stte e s bt e e sbaeessbaessssaesnssaeesnnsssnaeessnnnnes 274
atrshmlog_eITOT_WITTEL_Z.....iiiiiiiieiieeieeitee ettt ettt ettt st et e st e e bt e st e e bt e e sasbeessasaeesnans 274
AtrShMIOE_ EITOT_WTILE L _5..eiiiiiiiiiieieiieeeiteeette ettt e e e et e e st e e s te e e s baessabaesssbaessssaeesnnsssnaaessnnnses 274
AtrShmlOg_eITOT_WITTEL_B..c.uveiiiiiiieiieeieeiteete ettt ettt ettt st et e st e e bt e st e e saessasaeessasaeeenans 274
AtrSNIMIOE EITOT_WTILEL 7. eeiiiiieeiieeeiieeeite ettt et e et e et e e s tte e s bt e e sabaeessbaeesssaesnssaeessnsssaaeessnnnns 274
atrshmlog_eITOT_WITTEL_8......iiiuiiiiiiiieeiieteeeet ettt ettt et e et e st e e bae e s bbe e s asneeenans 275
atrShmIOg_ eITOT_WTILE L _O...eiiuiiiiiiiieiiieeeiee ettt ettt et e e st e e s be e s st e e s sbeesssbaeessnsneaaeeesnnnnns 275
atrShmlOg_eITOT_WITTE2_L..cc.eiiiiiiiiieiieeieeiteeie ettt et e et e st e st e st e e bt e s b e essaesabeessaessasneessasneeannns 276

atrshmlog_eITOr_WTItE2_10.......iiiiieieiiieeeiieeetie et e et e et e et e e s tteessteeesbaeessbeessssaessssaessnssssnaeessnsnnes 277

atrshmlog_eITOT_WITTE2_ T11...cc.uiiiiieiiiiieeieeit ettt ettt s e e te e st e e be e st e s sbeessb e e esasbeeesnsneesnnns 278

atrShMIOg_ eITOT_WTILE2_12......iiiiiieieiieeeiieeeiteerteeeeteeesteeestteeetaeesteeesbaeesssaeesssaessssaeessssssnaeessnnnse 278
AtrShMIOG_EITOT_WITTE2_2.....eiiiiiiiieiieeieerit ettt et et e e et e st e st e sbe e aeesabeesseesabeessaessasneesnnsneeannns 276
AtrSNIMIOE_ EITOT_WTILE2_3...ciiueiieeiieeeiieenieeentte et e esteeesteeestteeette e s bt e esbaeesssaesnssaesnssaeesnnsssnasessnsnses 276
AtrShMIOG_EITOT_WITTE2_Z......iiiiiiiiiiieeieeriteete ettt ettt st et e s te et e st e e st e sabeesbtessasnaessasneesnnns 276
AtrSNIMIOE_ EITOT_WTILE2 _5...iiiuiiiiiiieeeiieeeieeeette et e este e ettt eestte e stae e s et e e sbeeessbeessssaesnssaeesssssssasessnnnse 276
AtrShMIOG_EITOT_WITTE2_B.....eeieiiiiiiiieeieeriteeie ettt ettt e st et e s te et e st e e saeesabeessaessasneessasneeanans 277
AtTSNIMIOE_ EITOT_WTILE2 7. eeiiuiiieeiieeeiieeeieeeetteesteesete e e steeetteestteessbeeesabaeesssaessssaesnssaesssnsssnasessnnnses 277
atrshmlog_eITOT_WITTE2_8......ciiuiiiiiiiieiieeiteetee ettt ettt et sttt e st e e bt e sbe e baeesasbeessasneeenans 277
atrShMIO@_ eITOT_WTILE2_O...ciiueiiiiiiiieiieeeieeeete ettt et e et e st e e s te e e s teessabaesssbeesssaaeessssssaaaessnnnnes 277
ATRSHMLOG_EVENT _COUNT _MAX....cioiititeeeeitteeeeeiireeeeeecreeeeeeitreeeeessseeeeeeeeeeeenssssssssssssseeens 307
ATRSHMLOG_EVENT _INULL....ooiiiiiiiiiiiecitie ettt ettt ceette e eeiveeeeeeaaeeeeeeasaeseeenanasesseseeeeeesssns 311
ATRSHMLOG_EVENT _ONOFTF......oooo ittt eeeteeeeeeeteeeeeeaeeeeeeeaneeeeeenneeeeessnneeeennns 311
ALTSNIMIOE EVENE_L...uuiiieiiiiiiieiiiie ettt e e et e s sete e st eesae e e saaeesssaeessseeessseeesssssaaaessnssssnaeesannnns 229
atrShmlog_eXit_ClEAMUP.tirtiiiiieetietieete ettt ettt e ste e st e et e st e s bt e sabe e bt e ssseessaesasaeenns 249
atrshmlog_f_list_buffer_Slave_PrOC........cccueeiiiciiieiieiieciecteete ettt ae e aeete e e s aaee e e 250
ATRSHMLOG _FEINCE_ ..o ttiiieeiieee ettt ettt e eeeteeeeeeereeeeeeaaeeeeeeasaeeeeesssseeensssseesesnnnsssssnseees 310
ATRSHMLOG_FETCH_COUNTccottiiiiiiteee ettt ceeiteeeceeteeeeeeaaeeeeesssaeeeeessseeseeseeeeeeseessssssssnsnes 311
AtrShMIOG_fIUSHL...couiiiiii ettt ettt e s e e s baeeeans 246
ALTSHIMIOE_fTOE... e iiiiiiecie ettt ettt et eebe e te e st e e beessbe e seesssaesseasssaenseesnseesassseesnns 246
atrshmlog_get_aCqUITe_COUNL........ccouiiriierriierieerite et ettt e st e et este e st e sbeesatesteesaaesasaesstessseenssenas 255
ALTSNIMIOE GO ATRA. .. .ueeeuiieeiieeeiieeeite et e et e et e et eesete e s tte e st eesaateesaseeessbaeessseeenssaesssseesnsseessssaeenn 242
atrShmlOg_@et_ar€a_COUML.......civuierieeriierieeriteeieesit e et esieeste e st e saeesaeesaee e beessbeenseesaseeseesssessseesseesns 242
atrshmlog_get_area_ich_habe_fertig..........ccociiriiiiiiiiiieiieeeeeeeeee e 242
atrshmlOog_@et_area_VeTSION.......ccecueiruieriieiriierieerite et esitesteesite st et e st e e st e s bt e saaesnbeesatessaassnesssssaenas 242
atrshmlog_get_DUuffer id.........cooviiieiieieceee ettt et e e e e e 255
atrshmlog_get_buffer_Max_SiZe........ccooiiriiiiiiriiieee et 255
atrshmlog_get_ DUFfEr SIZe.......ccouiieiiiiieciece ettt e e e aa e e e 255
atrshmlog_get_ClOCK_d.......c.oiviiiiiiiee et et e s s 255
ATSNIMIOE GOL_ BNIV...eiiiiiiiiieiiiieeete ettt ettt e sete e e te e s ate e s abe e esaeesateessaeesssssssaaesesnnnssaeessannns 252
atrshmlog_get_env_id_SUffiX........ccoriiiiiiniiiii e 252, 255
AtrShMIOg_Get_ENV_PIEfiX....iiiciiiiiiieiieiieccieeeteete ettt se e et e e bt e s be e teesba e beessseeseesnseeessnseasnns 252
atrshmlog_get_env_ShmMid.........ccceoviiiiuiiriiiieeee ettt sbe e s te e e 252
ALTSNIMIOE GOL_ BVEIL....ceiiiiieiieieiieeeiieeeiee et e et e et e s sete e e tte e st eesaateesasaeesasaeessseeenssaesssseesnsseesnssaeenn 255
atrshmlog_get_event_10CKS_IMAX.......cocciirieriiiiniieieete ettt ettt ettt e st e st e e e sae e e snaeeeaee 255
atrshmlog_get_f list_buffer_slave_COUNT.........ccceiiiiiiiieiiieiiecieeeeee et e e e eaee e 256
atrshmlog_get_f_list_buffer_slave_Wait........ccceecieriiiriiiiiieieeeeetee et 257
atrshmlog_get_init_buffers_in_advanCe..........c.ccceeriieiiiiiiieiieieeeeeeeeeee et 256
atrshmlog_@et_INTTHIMIE.cooiiiiieieeeee ettt ettt e e st e st e e st e sba e s st e ssbeessnaeesnns 256
atrshmlog_get_inittime_tSC_after........ceiiiieiieiieeieeieeeieee ettt e et teebeessaesnaeeessaeeeenes 257
atrshmlog_get_inittime_tSC_DefOTe........ccoiiiriiiiiiiiiieeceeee ettt st 257
atrShmlog et _LOZBGINE....ccccuiiiiiiiiiiieeiie ettt ettt et e e te e e ste e e s be e s sbeesaaeesssaeesnssaaaessnnnnes 253
atrshmlog_get_MINOT_VETSION.......ciicuiiiierieeiieeteeiteeteerit ettt ste et e s te st e sbe e beessbessseesaseesssnsaesnns 257
atrshmlog_get_next_slave_10Cal........ccccuiiiiiiiiiiiiiieecccccce e e e e s e ara e e s 251
atrshmlog_get_PatCh_VEISION.......cc.eiiuiiiiiiiiieeieeieetee ettt ettt ettt e e be e aae e s aeaeeas 257
atrshmlog_get_prealloc_buffer_COUNL.........c.ccoiieiiiriiecieceeeeeeeeeee et 257
atrshmlog_@et_TealtiMIe......ccc.eiiiiiiiiieeiee ettt sttt ettt st et e st e e ba e e ssabaeesnnaeesans 254
atrshmlog et _SHIMI.......ccuuiiiiiiiiiiiieeeee ettt e e e s e e e s s aaee e e e s santaaeessannnes 257
AtrShMIOG et STAtISTICS. c.uteitieriieeiieeie ettt ettt et e e et e st e s bt e e et e e eabaeeesasaeessanes 254
atrshmlog_get_statiStiCS_MAaX_INAEX......ccccvueerrrieeriieeniiieeniieeesieeesseeesreesstseessseeessseesssseesssseessssesssnnes 257
ALTSHMIOZ_GOT_SITAEEY .. .eeetieeieiiieeieeite ettt ettt e sttt e st e st e st e e be e st e e st e st e esbtessseessaesnsaeseessseeas 257

AtrSNIMIOE GOt SITALEEY . PIOCESS. . cecruveeerureerrrreeeiireerireeesireeesseeesseesssseesssseessssesssssesssseesssssesssseesssseessns 257

atrshmlog_get_thread_fence_L..........ooouiiiiiiiiinieiieee ettt 255

atrshmlog_get_thread_fence_10.........cocuiiiiiiiiiiicieeieeeee ettt e e et eesaeesbeessne s 256
atrshmlog_get_thread_fence_11.........ccoooiiiiiiiiiiieeeteee ettt s 256
atrshmlog_get_thread_fence_12.........cccuiiiiiiiiiiiecieeteeeee ettt sreesbeessae s 256
atrshmlog_get_thread_fence_13.........cocooiiiiiiniieee ettt 256
atrshmlog_get_thread_fenCe_2...........ooouiiiiiiiiiiieeeeeeeee ettt et ebeessae s 255
atrshmlog_get_thread_fence_3...........ooouiiiiiiiiie ettt 256
atrshmlog_get_thread_fenCe_d...........oouiiiiiiieieceeeeee ettt re e e beessae s 256
atrshmlog_get_thread_fence_5...........oocuiiiiiiiiniee et 256
atrshmlog_get_thread_fenCe_6...........oocuieiiieiiiiiecieeeeeeeee ettt sre e e beessae s 256
atrshmlog_get_thread_fenCe_7..........cooiiiiiiiiiiee ettt 256
atrshmlog_get_thread_fence_8...........cocuiiiiiiiiiiieciceeeeeee ettt aae s 256
atrshmlog_get_thread_fence_O...........coouiiiiiiiiiniie et 256
atrshmlog_get_thread_l10Cal_tid..........ccooveeriiiiiiiiieieeeceee e erre e e aae e e e e 257
AtTSHMIOZ_GOT_tid...cuieeiieeieeii ettt ettt e et e s e s be e st e e be e sabesaaaeesnbeeenans 257
AtTSNIMIOE GOL_ VEISION...ciiuiiiiiieiiiieeeiteeett e et e st e seteeseteeeateessateessaeeesseesssaeeessssssaaessssnssnaessnnnns 257
atrshmlog_get_wait_fOr_SIAVeS........c.coviiiiiiiriiiieeete et st 257
ATRSHMLOG _ID....ccoooiiiiiieiteie ettt eete e e eeeaate e e eeaae e e e eesatseeeeesaseeeeessssseeseeesesssnsssssssssreeeeeeas 306
atrshmlog_il_connect_Duffers_liSt.........cocuiiiiriiiniiniee e 245
atrshmlog_il_get Taw_DUFFEIS.......c.coiiiiiiiiieccece e et ae e e e 253
AtrShMIOG_INTT_BVENLS. ..c.uiiiiiiiieeiieeieetee ettt sttt s et e st e e sat e sabe e st e s sbeessaesnbaenseesnseeas 254
ATRSHMLOG_INIT_IN_ADVANCE ...ttt ettt eeeatee e eetae e e e e e e e e e e e asssaasaeeeeees 306
atrShmlOog_INTt_IN_WTIEE....ceiiiiieiiieieee ettt ettt et e st ssae e e sabe e e st e e e ssanaeeennes 248
atrshmlog_init. ShM_L0G........ciiiiiiiiiiiiiecee et e s ae e s abe e s s saaa e e s e ennes 240
atrshmlog_init_thread_10Cal.........cccooriiiiiiiiee ettt 248
atrShMIO@ INIT VIA_ENV..cccuiiiiiiiiiiieecieceeteeeee ettt ettt e e st e e st e s s baessabaesssbeesssaaeessssssaaaessnnsns 260
atrshmlog_init_Via_file.......c.oooiiiiiiie ettt s 260
ATSNIMIOE INE32_ .uuiiiiiiiiiiieieiieeeee ettt e et e e st e e e s bee e sbeeessbeeessaessaeesssaeesssaeesssneesannnns 229
atrshmlog_internal_time_L.......coccueeieeriieniiiiiieeiee ettt ettt e st e sae e st e e bt e ssbeesbaesasaeees 229
atrshmlog_internal.h........c.cooviiiiiiiiinii e e 23, 58, 205, 231
ATRSHMLOG_LOGGING_IS_OFF_AT_START ...ttt ettt eeereeeeeeerreeeeeeareeeeennnnes 310
AtrSNIMIOE PETIWTADPET.C..veiiiieeiiieeetteee ettt ettt e e e e st e e s e e e s baeesstaeessseaeessnnnsnens 122f.
ALTSHMIOZ_ PIA_Leviiiiiiiieieee ettt et et e bt e st e s be e st e e beessbeesaesabaessnnbaesnns 229
ATRSHMLOG_PREALLOC_COUNTcoittieieiiteee ettt eeeaee e eeeaeeeeeesaaeeeeeeeeesssssssssnseeens 308
ALTSHMIOZ_TEAM. ...cueiiiieiiieeteeee ettt s e et e st e s sbe e st e e bt e sabessb e e e ssnaeesasnaeannns 244
AtrShmMIog_TeAA_FECR.......iiiiieiieeceee et ee et e e s sbe e b e e e eabeeeessaeasnes 243
atrshmlog_remove_slave_via_loCal..........ccooviiriiiiiiiniiiiieceete e 251
L] 01001 (0 < < A PO SO PR P O UPRRRPRRRRPPPPRRN 230
atrshmlog_reuse_thread_BUFfers..........coouoiiiiiiiiiii e 249
atrshmlog_set_area_ich_habe_fertig.........ccceciiriiiiiiiiiieiicieceeeceee et 242
atrshmlog_Set_DUTFer_SIZe.......ooiiiiiiiiiiiee et sttt 258
atrshmlog_ Set_ClOCK _id......ccoiiiiiiieeieeciieeeeeeee ettt s st e s e e e s stae e s saaaeeeeennes 258
atrshmlog_Set_eNV_PIefiX......cceeciiiriiriieiiieeieet ettt ettt et e s e et e e ssba e e e sabeeesnaes 252
ALTSNIMIOE SOt EVENL..ciiuiiiiiiieeiiieeriee ettt et este e e ree e steeesbeeesbeeessseeessseessseesssseesssseessnnssaeessnsnnes 258
atrshmlog_set_event_l0CKS_MaAX.......cccirruiirieriiienieeieeteeieet et see et s b e e ste bt e sbessbaesanae e e 254
atrshmlog_set_f_list_buffer_slave_COUNL............cccieriiiiiieriicieeeie ettt sae e saeee e 259
atrshmlog_set_f_list_buffer_slave_run_off.........c.cccoooiiiiniiinie e 260
atrshmlog_set_f_list_buffer_slave_Wait.........cccceeeiieriiiiieciecieee et 259
atrshmlog_set_init_buffers_in_advance_off...........cccccooriiiiiiiinniieee e 258
atrshmlog_set_init_buffers_in_advanCe_0mN...........cccoccuieruiieiiiiieniieeeeie et eeeeae e e saee e 258
atrshmlog_set_10gging ProCess_Off..........ccueeiiiiiiiiinieeeeee et s 259

atrshmlog_set_logging_process_off final..........cccccceiiiiiiiiiiiiniicicceceeeecee e 259

atrshmlog_set_10G@INgG PrOCESS_OM.....c.c.cerieeruierieriiienieeieeste et esetesteesieestessaseessbreeesssaeeesasaeesnnnes 259

atrshmlog_set_prealloc_buffer _COUNLt..........cccuieviiiiiieiiiiieceeeeeeee e e e e 259
ALTSHMIOE_ SOt SITALEZY .. ceeuviiiiirieetieeieeitteete et e sttt e it e st e e bt e st e s bt e satesseessbesbaesateenseesssesssaessnsnaesnnns 259
atrShIMIOg_ Set_SITAteZY _PIOCESS.vveiereerrreeriieeeireeeieeesssteessseeessseeessseesssseesssseesssseessssessssnssseessnssnns 259
atrshmlog_set_thread_fenCe...........c.ooriiiiiiiiiiieee ettt s e e s e e 259
atrshmlog_set_thread_fenCe_T..........cccieoiieiieiiieiicieeeeeeeee et te et e e e s saeeeae e s e eaeeeenes 258
atrshmlog_set_thread_fence_10..........ceovuiiriiiiiiriiterieetesee ettt st e s s ine e e 259
atrshmlog_set_thread_fenCe_T1........c.cocoieiiiiiiieiiiiieeieete ettt ete e seeeteesreeebeeessnaeeeessneeeenns 259
atrshmlog_set_thread_fence_12..........c.coviiiiiiiriiieeetee ettt e e s e e 259
atrshmlog_set_thread_fenCe_13........cccuiiiiiiieiiieieeeeeteeee ettt te e s aeebe e s saeesae e e e naeeeenes 259
atrshmlog_set_thread_fenCe_2...........ccooiiiiiiiiriieetee ettt e e s e e 258
atrshmlog_set_thread_fenCe_3..........ccciiiiiiieiiiieceeceecee ettt be e s ae e sae e e e eaeeeenes 258
atrshmlog_set_thread_fenCe_4...........cc.oouiiiiiiiiniieeeetee ettt e e s e e 258
atrshmlog_set_thread_fenCe_5..........coueiviiiiieoiiieceeeeeeete ettt et e ae e b e e e s eaeeeenes 258
atrshmlog_set_thread_fencCe_6..........cocueiuiiiiiiiiiniieeetee ettt 258
atrshmlog_set_thread_fenCe_7..........ocuiiiieiieieicceeeeeeete ettt e be e s aeeaae e e e saeaeeaes 258
atrshmlog_set_thread_fence_8............cooiiiiiiiniee et 258
atrshmlog_set_thread_fenCe_O..........cociiuiiiiieoiieieceececteete ettt e ae e ebe e s e eaeeeenes 258
atrshmlog_set_wait_for_slaves_off..........ccocooiiiiii e 259
atrshmlog_set_wait_for_SIaves_ON........cccuieiiiiiiiiiiiiecieccee et et e e e e e e 260
ATRSHMLOG_SLAVE_COUNT ...ttt ettt st ettt siteste s st e steesaessseessaesssaenseens 309
ATRSHMLOG_SLAVE_WAIT _INANOS ...ttt eete et eseteeveesteesteesaessseessaeesaenseens 308
atrshmlog_SIEEP_NANOS.....cc.iiiiiiiieieeiteeee ettt et s e et e st et e st e e ssaesabaesaeesnseeas 254
F 100 11001 (oY <] (0] SO PP SPPRRRRPPPPPRRN 248
ATRSHMLOG_STRATEGY ...ttt sttt ettt et e sete s st e stesbeesatesseesatessssaessnnseesssnseesnns 307
atrshmlog_ Strateg@y_AADTIVE........eiieiieriieeeieeeiieeete et et e esre e et e e s sir e e st e e sbeeesabeessasaeessssaaaesannnns 304
atrshmlog_strateg@y_adaptive_fast........ccceirieriiieniiniiiieeieete ettt ettt et e e st e e snneeeeaes 304
atrshmlog_strategy_adaptive_Very_faSt........cccceeciiirieriiieiienieereeeieesre e eeee e ee e s ae e vee e essvaeeenes 304
atrshmlog_strate@y_diSCAI.......cccuieruiriieriieerieeieet ettt ettt ettt s e et esbesbeesbeeessneaeenes 303
atrshmlog_Strateg@y_ SPIN_LO0P.....ccccuiiiriieriiieriieeeeeeette et e st e erreesser e e s be e e sbeeesbeessasaesssseesnsseessnnes 303
AtrShmMIOG_Strate@Y_ WaIl.....c.eeeiieriiieeieeiieeieeite ettt ettt ettt st et e s be et e st e e bt e ssbeesaeesasaennns 56, 303
ATRSHMLOG_STRATEGY _WAIT ...ttt ettt et steeveesvesteesstaestaessssaeassnnseasnns 307
ATRSHMLOG_STRATEGY_WAIT_TIME......ccctitiiiiiteeieeteeieeieeete et site e st e e sieeesaee e 307
AtTSNIMIOE SWIGWIAPDET.Cu.vevieeiiieeciieeeiteeetee et e erte e e bt estaeesbe e e s beeesabee s aseesasaesnseessseesnsseesnseens 138f.
ALTSIMIOZ_TIA_feneiiiiiiiieiie ettt sttt e et et e st e e s bt e s b e e sabesbaesabesnseessneaesnns 229
atrshmlog_time_Nan0SE@CONAS_L.......ceecuiiiriuieiriieiiieeiiieeesteeesteessteeeseeeessateesssaeeessssnsaaeesssssssseeesennnns 229
atrshmlog_time_SECOMAS_L.....cc.eirieriiiirieeiienie ettt ettt s e st este e bt e st e s b e e e ssneessnneeanans 229
F ey 01001 (o< 11 LI OO O TP UPURPPSRRRPPPPPRN 229
atrshmlog_transfer_mem_t0o_ShIM........cccooriiiiiiiiiiiiieeee et s 242
atrshmlog_turn_logging Off...........cociioiiiiiiiiceee e a e e ae e e e aae e e e 249
ALTSIMIOZ_ VETIEY..uuiiiiiiiieeee ettt et ettt et e st e e s e e st e e aeesnsee s 241
ATRSHMLOG_WAIT_FOR_SLAVES_ON.....ccttiitieieeiteeieeiteeee et eseeereesseesseesaesseessaessseesseens 309
ATRSHMLOG_WRITE_COUNT ..ottt ettt sttt ssseestesse e sibaeessasaessnsaeens 312
AtTSNIMIOE. WITTEO....c i tieiiieeiiee ettt ettt et e e e ee e e st e e sbeeesabeessseaessteesssseessseessssnaesennnes 246
ALTSIIMIOZ_ WITTE L. ..ttt sttt ettt e s b e e bt e st e e baesabe e baessbeesaesabaeessnsaesnns 246
ALTSNIMIOE. WITTE2...cciiiiiiiie ettt ettt e ste e et e e e e e e st e e sbe e e sabeesssaaessteesssseessaeessssnaesennnns 246

atrshmlog.h.20, 23, 29ff., 37, 41, 49¢., 56ff., 63f., 67, 70, 84, 93, 98, 157f., 183, 195f., 204f., 225ff.,
238, 240ff., 245f., 248ff., 267f.

ATTSIIMIOZ. 0.ttt ettt e s te e st et e st e e be e st e e beesabe e abeeeenraeas 121
ATRSHMLOG JAVA. .ttt s tet st se st ese st et et sbeste st ebesbetestensesneensenees 84, 93, 98
ATSNIMIOGCALC. ...ttt b sttt et b e e st e b re e 20

atrShmlogCheCKCOMPIELE.cccuviiiiiiieiieeeiieeceeee ettt et sste e e saae e s s ebae e e e e essnseaes 20, 35

AtrshmlogchecKCOMPIELe........cc.eiiiiiiiieteeee ettt ettt seae st e 25

AtrShMIOGCHECKSYSTOIM . cciuiiiiiiiiiie ettt et e et e e eia e e sae e e sbeeesbeeesnbeessasaeenssnns 20, 37, 49
ALrShMIOGCNECKSYSTOIML.eeuiiiiieeiieiieeie ettt ettt et s et e st e et e s be e saaesbaesaeessseenssenans 25
ATSHIMIOGCOMV.....eiiiiiiiiieeete ettt ettt e e s tr e e s e e e s aaeesbaeessaeeessnsssaeessssnssneeessnnnns 20, 46, 174
ALTSIMIOZCONVttt ettt et e st e e s at e s bt e s st e s b e e bt e ssbe e sbeeesasbeeesasnaessasaeeas 47
F 0] 01001 (0o {al0)1 1 7/<] n SO R SRR 20
AtrShmMIOGCIeALe.evveeiieeiieieeteeterte ettt 20, 41, 97, 99, 116, 132, 149, 169, 181
ATSHIMIOGAETECL. ... eecevieiiecieeeeee ettt ettt e st e e be e st e et e e ssaeesbeesessseesasseeesnssaeennns 20, 193
ATSHMIOGAUIMIP. ..ottt ettt ettt et e st e e ae e st e e satesbeesstesasaeesnnbaeesnnns 21
0] 11001 (0o =] 0 o) OO OO PRSPPI 21
AtrShMIOGIINIS.eiiiiiieee ettt ettt e sat e st e e e s aba e e esaes 21
ALTSHIMIOGEOTK. ... veeeeieeiieee ettt e s e e e s b e e beessbeesssbeeesasaeeesssaeeessaeans 21
ATSHMIOGIOTKWIITE.eeiieieieeteee ettt ettt e e st e st e e ssabaeesaneas 21
F 100 01001 (041111 S P SOORPUPRRRUPRRSRTRRRRP 21, 42, 99
atrshmlogiNIiPACKAZE.C....eeuvieiiiiiieeieeee ettt ettt e s 20, 28, 83f.
AtrShMIOGMOAUIE.C....eeveeieeeeee ettt ettt e et e s be e saeebe e saeeenssaeeennseas 106f.
ATSAMIOGOTT ...ttt sttt st e st e st e e sseesaes 21, 280
1] 01001 (0 0] 1 FOU OO OSPPRRRRP 21
ALTSNIMIOGIEATET ... eeieieiieiiieteeee ettt ettt e st e et e st e e sse e st e e bt e sabeesasbaessnsbaesenneas 21
AtrSHMIOGIEATETD......ccuiiiiiieeteeeee et s e et e e s s te e s abe e s s abaeaaeeennnnaaeas 21
ALTSHIMIOGIEATEIC. ... ettt ettt et e et e s bt e s ae e st e e bt e ssbe e sbaeesasbeeesasnaessnsaaeas 21
AtrShMIOGreaderd.........c.ceeiieiieiieeieeieeie et ettt e et ste e s te e st e esbe e saesbeesaeessseessnseaenns 21f., 44, 194, 196
ALTSIIMIOGIOSEL.....eiueteeeeiieete ettt ettt e s e et e e st e e bt e s st e e b e e s st e esseesabeenbaesstessseenssesaseensnes 21
atrShmIO@SiGNAlT@AdET........ceiiuiiieiieeeiieeeee ettt et e e s e e e s be e e s beeessbeessaaessnaeens 21, 186
AtrShMIOGSIGNAIWTILET.....ceoutiiiiiiieieeeete ettt sttt ettt be e st e s bt e s b e s be e s st e e snsaeesaneas 22
1] 01001 (0410) AU SPPRRRRPP 22
ALTSNIMIOGSTAL. .. .veeeieeitieiieeie ettt ettt ettt e st e e be e s b e s beesaeessseenanesnns 22, 100, 202, 286
AtrSNMIOGSTOPIEATET.......cecvieieiieeeiieeeiee ettt ettt te e st e e e taree e s s ssaaaeeeessnneeaeeeas 22,44, 173, 186
ALTSIIMIOGLEE. ...ttt ettt e et e st e s be e st e e be e s st e e beesabeesasbee e asaeeesasaeesnnsaeeas 22
ATSHIMIOGLEST.DL.ceetieeiieeeeeec et e e e st e e et e e s bt e e s aaeeessbetaaeeesnnntaaeeesannne 129
ALTSNIMIL OGS T. DY e etteeiieeiteete ettt ettt ettt et s e e st e st e e s aae st e e bt e ssbe e st e sabeesstesnseesaesnseesnnneas 113
ATSNIMIOGLEST.ECL . veeeniiieeiiee ettt ettt e et e e st e e s aee e s baeesbaeessseessssaesnsseesnsseesnssaeenn 146
AtrShMIOGLESTO0. ... eeiiieiieeieeteee ettt ettt te st e st e st e s bbe e e sabbeessasaeeenans 22f., 43, 171, 184
ALTSHIMIOGEESTO L.....eeieiiieiiecie ettt ettt ettt e e te e bt e e be e beessaeesbeessbeesseesssaesseasssesnssaeesssseeennsseannnes 22f.
ALTSHIMIOGLESTOZ. ... ettt ettt ettt e st e e bt e s st e e bt e s it e e beesabesabaesabesssaenasesaseennns 22
AtrSHIMIOGLESTO3......ceciiieeieeeieeete ettt e st e e s e e e s ae e e sabeeesaeeeessteeesssaeesseesnsnes 22,179, 193
ALTSIIMIOGVETITY ...ttt ettt e bt e st st e e s b e s be e st e ssae e s st e s seenns 22
DASEAIT . c.eeeiieeeeieeeeee ettt ettt oo ettt ettt e e e s e —t et eeeesee s ———tteeeesee e e ————tttee e e et ettt tt st aararaannas 157f., 176
BASEDIR......... 19, 24, 27, 32, 38, 40, 78, 85, 92, 108, 113, 124, 129, 140, 146, 157f., 163, 189, 228
DUAAYAOC.SH...ceiiieeiieeeee ettt s e e e te e s saae e s sbe e e abae e baeesssseesssaeessseeenssaeesennnns 24
DUAAYTID. SR .ttt ettt st st s 22,24
CBIIEOS ¢ uvveeeeeutreeeeesitteeeesureeeeesasteeeesusaeeessssaeesassssaeeessasaaeesasssaeesesassaeesssssaaessssssaeesssssseeesssssaeaaeeeeesanns 157
CNEOS...c ettt ettt ettt ettt et e e bt st at e bt et eh e se e e sab e e et e e bt e e neeeane 53, 155, 160
(O 1E 1 1 F: 1| IR s SO OO OO U PP SPPRRRRPP 25
COMPIle_JIT_STUD.SH.c.ueiiiiiiiiieiiee ettt ettt st 28, 86, 91
COMPIle_PeTl_StUD.SH...cciiiiiiiiiiiieee et e e e aa e e ae e e sanaaaae e s 125, 128
compile_python_StUD.SH.......cccuiiiiiiiiiiiieeee ettt 109, 112
COMPIle_SWiIgZ_ StUD.SH..cciiiiiiiiiiiiieceeceeee ettt e st e e e s s abaaeeesennns 141, 145
compile_to_class_package_version.Sh...........cocceevuieriersiiinieniiiinieeieeteeie et esee e s ree e 28, 86, 91
create_header_package_version.Sh...........ccoccueiroiiiniiiiiniiiiiiieciecce e 28, 86f., 91
create_jni_liD.Shu.c.ceiiiiieeieee e 28, 87, 92, 94, 96, 189

Create_Perl_1iD.Sh..cccuiiiiiieeecee e e s 125, 128, 131

create_PYLhOn_LiD.Sh.c...ciiiiiiiiiiee e 109, 112, 115

create_SWig 1iD.Sh......iiiiiiec e 141, 145, 148
[6)7:171411 IOUUUUUN 19, 23, 25, 27, 158, 161, 163, 175f., 180ff., 188f., 228, 232f., 241, 253f., 302, 306
Y BWITL ettt sttt ettt et e e e h et e e s bt e bt s a b e s at e bt et e eat e be e be e bt e ebteeeateeeateeeabeena 161, 223
Ot JAVALSHL ..t 28, 87, 92, 94f., 189
(& 0108 1<) IR 1 TS OO 128, 130
(4 [0 985] =T 0] 10 18] 1 OO OO PRSPPI 24
& 01000\ 1 11011 XY o OO OO U PR 112, 114
Ot SWIG.SH. ittt ettt ettt e e bt et e st e a e e st e e bee e e baeeeanee 145, 147
1<) 1 IR o TR 25, 157
EL SRttt sttt a e st a b et sne e na e e areeeane 24

environment 18, 23, 26ff., 30f., 38, 41f., 60, 62, 65, 77, 79, 83, 87, 92, 95, 98ff., 103, 106, 112, 114,
122, 128, 130, 138, 145, 147, 161, 169, 176f., 189, 199, 204, 208, 222, 232f., 238, 252f., 255, 270,
272,274, 276, 279, 281, 284, 298, 301, 305f., 311, 313

0 517400 0100 =) 1 USRS 305
|0 o) N oo 4 <L 267
event.30, 57, 67, 70f., 73, 79, 99ff., 229f., 239, 254f., 258, 272, 274, 276, 279, 296, 300f., 305, 308,
311, 313f.

EVENT ..ottt e e e et e e e e e taae e e e e etaaeeeeeasaeeeeeasssaeeeessseeeeeeeeaennnsssssnnnns 255, 307, 311
OIS, o ee e e et et e e —— e e e e e aat e e e e taeeeeeaaeeeeenbbeeeeeraraarrareees 224
fenster;plural..........cccceveennnee. 13, 19, 25, 60, 84, 100f., 103, 161, 176, 181, 193, 223f., 228, 234, 254
ol 7 T] FO OO U SPUPR PP 24f., 158
BO0.SH. ettt et sttt e s bt e h e e st e et e e st aeeenabaeeenneas 24f., 157
getfroMMAIN.Sh....c.uiiiieiieeceeeee e 87f., 93, 109f., 125f., 141ff., 189
JAVA. ittt 16f., 20, 26ff., 32, 59, 83ff., 92ff., 98f., 103, 188f., 202, 214, 222f., 232
L £ 77= TR 29, 212
JAVA ..ottt ettt e e e et e e e e eaa e e e e e ab e e e eeaaraeeeaaaabaeeeatbaaeeaarateeaaatraaeeeetbaeeeeeaeaannrnnes 28,94
JIHe ettt et et e e e eeenes 20, 26ff., 59, 83f., 86f., 91ff., 96ff., 188ff., 222
TN ettt e e e e ee e e e e eetae e e e e e aaa e e e e aaaeeeeabateeaaaateeeaaabaaaeeaaabaaeeeaanranaraaaaaaaaeeeeaaannns 27
KONttt ettt et et e e et ettt et e e e e esesesaaateeeeeesesassaaaateeeeseseseeeeeessestasaraaaanaanaas 12, 15, 17, 771.
0) 0 U U 78
1libatrshmlog.a.......cccveeiieiiieieeieeeceee e 22, 84,92, 106, 113, 123, 129, 139, 146
makeall.sh.......ccoouveieeiiiieieeeeceee e, 23ff., 39, 50, 58, 86, 109, 125, 141, 158f., 165, 177f.
INEIMIOTY DAITIETS. .. veiiiiieeiiieeiieeet ettt et e et e e ste e e sate e st e e e beeesabaeesabeeesasaeessseesnssaessnseesnsseesnssaeenn 224

mingw....19, 27, 84, 87, 103, 106, 123, 139, 158, 161, 176f., 180, 188f., 191f., 223, 228, 232f., 239,
241, 253f., 280, 302, 305f., 311

IMHITIZW ...ttt ettt ettt et s e et e st e st e s st e e sbe e st e e bt e s abe e st e sas e e beeeabeesaesas e e st eenbeesaesnbaenseeenseean 228
NON INLINE CODE......ooteieiieeeeeeeeee ettt ettt e s e e e e e et e e e eeeese s asa e s saansesssnnseennnnnns 260
PaACKAISIIO.SH....eeeeceieee ettt ettt e ettt e e e e tae e e e e eta e e e e e taaeeeeeasaeeeeennreee e e arraeeeenrreeeeens 26
013 o O OO SPPPSPRRP 16, 20, 25ff., 29, 32, 121, 162
POSIX uevteeeeeirreeeeieeeeeeireeesesrreeeeenreeessanrreeesesennnnnrrenneeees 25, 176, 204, 215, 221, 228, 241, 254, 305f.
0741 110) 1 USRS RRRPPRRRRRPRRN 16, 25, 27, 29, 32, 105
SEALSH. ..ttt et e e e e e ba e e e e e aaae e e e bt e e e eeeaaeeeeatraaeeeaaraaaaaaeeeeeeeaeaannnnannns 26
SWIG ...ttt e e et e e ee e e e e eesbaeeeeeaaeeeeessaseeeeestseeesesaeeeeseesennnnnnes 27,29, 32, 138
EDUEE et e e e e e et e e e e e taa e e e e aaaeeeeebaaeeeearaaeeeeeeeeeannntarrrrarraaaaens 235
{131 4 Y= T« IO USRS 249
tHIEAA LOCALS. .. eeee ettt eetre e e ee e e e e e ttaeeeeeabeeeeeessseeeeeesssseeeessaseeeanssnnnnnes 236
[0 s Ty =T 1 R DU TURPPRUPRURRTRTRt 26

	Introduction
	The usual chapter you won't need to read

	History first
	How it began, how it was revived, how it goes on

	Whom do we have to thank for this ?
	The guys behind this module
	The guys who have made it better

	The basics of the ATRSoft GmbH Shared Memory logging module
	This is the first must read chapter

	Why to build it
	The ways to get a working module
	Definition : BASEDIR
	Definition : Module
	Definition : Support program
	Definition : Library (THE)
	Definition : Headers
	Definition : Build programs
	Definition : Helper
	Definition : Layer
	Definition : JNI Layer
	Definition : The perl layer
	Definition : The python layer
	Definition : The SWIG layer
	Definition : The area
	Definition : The event
	Definition : The environment
	Definition : The flag files

	How to build it
	The hopefully working way
	After the download
	Check for completeness
	Check for the platform
	First time: build
	First test : create the buffer
	First test : init the area
	First test: run the simplest test program
	First test: getting the log into files
	First time : converting binary to human readable

	When it does not work for you
	Check the C compiler
	Check the C++ compiler
	Check the OS if the things fail to run

	When it does not fit for your needs
	Changes with the build in initialization stuff
	Changes in the code
	Adding stuff

	Now that I have it – how do I use it ?
	The way to implement a simple logging program
	Include stdio.h
	Starting point and parameters
	Calling the library function printf
	Returning from main
	The final end (or not ?)
	Adding the module
	Attaching to an area
	Adding the logging
	Compile and test
	The deep stuff
	Measuring a printf

	The big example for the C community
	main
	eval
	exec
	expr
	funcs
	The rest

	The java language support
	How it works
	How to use it
	How to build it in the first place
	The java directory
	The bin directory
	Copy headers and lib from the C module
	Change into your vendor and jdk directory
	Setting the environment
	Building with create_jni_lib.sh
	Testing the jni bridge
	Details

	The python language support
	Python's SEX
	How it works
	How to use it
	How to build it in the first place
	The python directory
	The bin directory
	Copy headers and lib from the C module
	Change into your src directory
	Setting the environment
	Building with create_python_lib.sh
	Testing the python bridge
	Details

	The perl language support
	Perl XS
	How it works
	How to use it
	How to build it in the first place
	The perl directory
	The bin directory
	Copy headers and lib from the C module
	Change into your src directory
	Setting the environment
	Building with create_perl_lib.sh
	Testing the perl bridge
	Details

	The one fits all SWIG approach
	How it works
	How to use it
	How to build it in the first place
	The SWIG directory
	The bin directory
	Copy headers and lib from the C module
	Change into your src directory
	Setting the environment
	Building with create_swig_lib.sh
	Testing the tcl bridge
	Details

	Another platform : CentOS
	Get the compiler to work that you need
	Changing the build scripts
	Testing

	Another platform : cygwin
	After the unpack
	Prepare headers
	First compile
	The cygserver start
	Create of a buffer
	Making the area with init
	First test with atrshmlogtest00
	Reader for transfer
	Conversion of the binary to human readable form

	Another platform : mingw
	Copy the headers
	Compile with makeall.sh
	End of compile
	Path handling for vanilla cmd
	Creating the buffer
	The init of the area
	First test with atrshmlogtest00
	Starting the reader for memory fetching
	Conversion of the binary into human readable text
	The jni layer for mingw
	Testing the jni bridge for mingw

	What are those numbers for ? Adjustment process ?
	Now we need to know how fast it is
	Now we know how fast it is – can we make it faster ?
	A low throughput scenario
	A scenario for a long term running low throughput program
	A scenario with low throughput and multiple threads
	A scenario with high throughput and small number of threads
	A scenario with very high throughput

	Statistics

	When I change it, what then ?
	The Adjustment
	Changes in the first place in atrshmlog.h
	Changes for internals
	Changes for the code

	Local changes for your own system
	Patches
	Wouldn't it be nice to get this, too ?

	The glory details
	Theory of the module
	The way to log in shared memory – or how to circumvent it
	Cindy's classroom
	Back to work
	A word about fences – or should I say memory barriers ?
	Fence 1
	Fence 2
	Fence 3
	Fence 4
	Fence 5
	Fence 6
	Fence 7
	Fence 8
	Fence 9
	Fence 10
	Fence 11
	Fence 12
	Fence 13

	And now for the gallery – the C module way
	The log buffer
	The area
	The tbuff struct in client
	The thread locals
	The externs
	The macros
	Real code
	atrshmlog.c
	atrshmlog_attach
	atrshmlog_init_shm_log
	atrshmlog_cleanup_locks
	atrshmlog_verify
	atrshmlog_create
	atrshmlog_delete
	atrshmlog_get_area
	atrshmlog_get_area_count
	atrshmlog_get_area_version
	atrshmlog_get_area_ich_habe_fertig
	atrshmlog_set_area_ich_habe_fertig
	atrshmlog_transfer_mem_to_shm
	atrshmlog_read_fetch
	atrshmlog_read
	atrshmlog_alloc
	atrshmlog_il_connect_buffers_list
	atrshmlog_acquire_buffer
	atrshmlog_dispatch_buffer
	atrshmlog_free
	atrshmlog_flush
	atrshmlog_write0, atrshmlog_write1, atrshmlog_write2
	atrshmlog_init_thread_local
	atrshmlog_init_in_write
	atrshmlog_stop
	atrshmlog_turn_logging_off
	atrshmlog_reuse_thread_buffers
	atrshmlog_exit_cleanup
	atrshmlog_create_slave
	atrshmlog_f_list_buffer_slave_proc
	atrshmlog_decrement_slave_count
	atrshmlog_remove_slave_via_local
	atrshmlog_get_next_slave_local
	atrshmlog_get_env
	atrshmlog_get_env_shmid
	atrshmlog_get_env_id_suffix
	atrshmlog_get_env_prefix
	atrshmlog_set_env_prefix
	atrshmlog_buffers_prealloced
	atrshmlog_il_get_raw_buffers
	atrshmlog_get_logging
	atrshmlog_get_realtime
	atrshmlog_get_statistics
	atrshmlog_sleep_nanos
	atrshmlog_set_event_locks_max
	atrshmlog_init_events
	atrshmlog_get_acquire_count
	atrshmlog_get_buffer_id
	atrshmlog_get_buffer_max_size
	atrshmlog_get_buffer_size
	atrshmlog_get_clock_id
	atrshmlog_get_env_id_suffix
	atrshmlog_get_event
	atrshmlog_get_event_locks_max
	atrshmlog_get_thread_fence_1
	atrshmlog_get_thread_fence_2
	atrshmlog_get_thread_fence_3
	atrshmlog_get_thread_fence_4
	atrshmlog_get_thread_fence_5
	atrshmlog_get_thread_fence_6
	atrshmlog_get_thread_fence_7
	atrshmlog_get_thread_fence_8
	atrshmlog_get_thread_fence_9
	atrshmlog_get_thread_fence_10
	atrshmlog_get_thread_fence_11
	atrshmlog_get_thread_fence_12
	atrshmlog_get_thread_fence_13
	atrshmlog_get_f_list_buffer_slave_count
	atrshmlog_get_init_buffers_in_advance
	atrshmlog_get_inittime
	atrshmlog_get_inittime_tsc_after
	atrshmlog_get_inittime_tsc_before
	atrshmlog_get_minor_version
	atrshmlog_get_patch_version
	atrshmlog_get_prealloc_buffer_count
	atrshmlog_get_shmid
	atrshmlog_get_f_list_buffer_slave_wait
	atrshmlog_get_statistics_max_index
	atrshmlog_get_strategy
	atrshmlog_get_strategy_process
	atrshmlog_get_tid
	atrshmlog_get_thread_local_tid
	atrshmlog_get_version
	atrshmlog_get_wait_for_slaves
	atrshmlog_set_init_buffers_in_advance_off
	atrshmlog_set_init_buffers_in_advance_on
	atrshmlog_set_buffer_size
	atrshmlog_set_clock_id
	atrshmlog_set_event
	atrshmlog_set_thread_fence_1
	atrshmlog_set_thread_fence_2
	atrshmlog_set_thread_fence_3
	atrshmlog_set_thread_fence_4
	atrshmlog_set_thread_fence_5
	atrshmlog_set_thread_fence_6
	atrshmlog_set_thread_fence_7
	atrshmlog_set_thread_fence_8
	atrshmlog_set_thread_fence_9
	atrshmlog_set_thread_fence_10
	atrshmlog_set_thread_fence_11
	atrshmlog_set_thread_fence_12
	atrshmlog_set_thread_fence_13
	atrshmlog_set_logging_process_off_final
	atrshmlog_set_f_list_buffer_slave_count
	atrshmlog_set_logging_process_off
	atrshmlog_set_logging_process_on
	atrshmlog_set_prealloc_buffer_count
	atrshmlog_set_f_list_buffer_slave_wait
	atrshmlog_set_strategy
	atrshmlog_set_strategy_process
	atrshmlog_set_thread_fence
	atrshmlog_set_wait_for_slaves_off
	atrshmlog_set_wait_for_slaves_on
	atrshmlog_set_f_list_buffer_slave_run_off
	atrshmlog_init_via_env
	atrshmlog_init_via_file
	NON INLINE CODE
	All files with _flag.c
	All files with _buffer.c
	All files with _list.c
	Best behavior

	Appendix
	Error codes
	atrshmlog_error_ok
	atrshmlog_error_error
	atrshmlog_error_error2
	atrshmlog_error_error3
	atrshmlog_error_error4
	atrshmlog_error_error5
	atrshmlog_error_connect_1
	atrshmlog_error_connect_2
	atrshmlog_error_init_thread_local_1
	atrshmlog_error_mem_to_shm_1
	atrshmlog_error_mem_to_shm_2
	atrshmlog_error_mem_to_shm_3
	atrshmlog_error_mem_to_shm_4
	atrshmlog_error_mem_to_shm_5
	atrshmlog_error_mem_to_shm_6
	atrshmlog_error_mem_to_shm_7
	atrshmlog_error_mem_to_shm_8
	atrshmlog_error_attach_1
	atrshmlog_error_attach_2
	atrshmlog_error_attach_3
	atrshmlog_error_attach_4
	atrshmlog_error_attach_5
	atrshmlog_error_attach_6
	atrshmlog_error_init_in_write_1
	atrshmlog_error_write0_1
	atrshmlog_error_write0_2
	atrshmlog_error_write0_3
	atrshmlog_error_write0_4
	atrshmlog_error_write0_5
	atrshmlog_error_write0_6
	atrshmlog_error_write0_7
	atrshmlog_error_write0_8
	atrshmlog_error_write0_9
	atrshmlog_error_write1_1
	atrshmlog_error_write1_2
	atrshmlog_error_write1_3
	atrshmlog_error_write1_4
	atrshmlog_error_write1_5
	atrshmlog_error_write1_6
	atrshmlog_error_write1_7
	atrshmlog_error_write1_8
	atrshmlog_error_write1_9
	atrshmlog_error_write1_10
	atrshmlog_error_write1_11
	atrshmlog_error_write1_12
	atrshmlog_error_write2_1
	atrshmlog_error_write2_2
	atrshmlog_error_write2_3
	atrshmlog_error_write2_4
	atrshmlog_error_write2_5
	atrshmlog_error_write2_6
	atrshmlog_error_write2_7
	atrshmlog_error_write2_8
	atrshmlog_error_write2_9
	atrshmlog_error_write2_10
	atrshmlog_error_write2_11
	atrshmlog_error_write2_12
	atrshmlog_error_area_version_1
	atrshmlog_error_area_count_1
	atrshmlog_error_area_ich_habe_fertig_1
	atrshmlog_error_get_event_1
	atrshmlog_error_get_logging_1
	atrshmlog_error_get_logging_2
	atrshmlog_error_get_logging_3
	atrshmlog_error_get_logging_4
	atrshmlog_error_create_1
	atrshmlog_error_create_2
	atrshmlog_error_create_3
	atrshmlog_error_create_4
	atrshmlog_error_init_shm_1
	atrshmlog_error_init_shm_2
	atrshmlog_error_init_shm_3
	atrshmlog_error_read_1
	atrshmlog_error_read_2
	atrshmlog_error_read_3
	atrshmlog_error_read_4
	atrshmlog_error_read_5
	atrshmlog_error_read_fetch_1
	atrshmlog_error_read_fetch_2
	atrshmlog_error_read_fetch_3
	atrshmlog_error_read_fetch_4
	atrshmlog_error_read_fetch_5
	atrshmlog_error_verify_1
	atrshmlog_error_verify_2
	atrshmlog_error_verify_3
	atrshmlog_error_verify_4
	atrshmlog_error_verify_5
	atrshmlog_error_verify_6

	Statistics
	atrshmlog_counter_time_low
	atrshmlog_counter_time_high
	atrshmlog_counter_attach
	atrshmlog_counter_get_raw
	atrshmlog_counter_free
	atrshmlog_counter_alloc
	atrshmlog_counter_dispatch
	atrshmlog_counter_mem_to_shm
	atrshmlog_counter_mem_to_shm_doit
	atrshmlog_counter_mem_to_shm_full
	atrshmlog_counter_create_slave
	atrshmlog_counter_stop
	atrshmlog_counter_write0
	atrshmlog_counter_write0_abort1
	atrshmlog_counter_write0_abort2
	atrshmlog_counter_write0_abort3
	atrshmlog_counter_write0_abort4
	atrshmlog_counter_write0_discard
	atrshmlog_counter_write0_wait
	atrshmlog_counter_write0_adaptive
	atrshmlog_counter_write0_adaptive_fast
	atrshmlog_counter_write0_adaptive_very_fast
	atrshmlog_counter_write_safeguard
	atrshmlog_counter_write_safeguard_shm
	atrshmlog_counter_write1
	atrshmlog_counter_write1_abort1
	atrshmlog_counter_write1_abort2
	atrshmlog_counter_write1_abort3
	atrshmlog_counter_write1_abort4
	atrshmlog_counter_write1_discard
	atrshmlog_counter_write1_wait
	atrshmlog_counter_write1_adaptive
	atrshmlog_counter_write1_adaptive_fast
	atrshmlog_counter_write1_adaptive_very_fast
	atrshmlog_counter_write1_abort5
	atrshmlog_counter_write1_abort6
	atrshmlog_counter_write1_abort7
	atrshmlog_counter_write2
	atrshmlog_counter_write2_abort1
	atrshmlog_counter_write2_abort2
	atrshmlog_counter_write2_abort3
	atrshmlog_counter_write2_abort4
	atrshmlog_counter_write2_discard
	atrshmlog_counter_write2_wait
	atrshmlog_counter_write2_adaptive
	atrshmlog_counter_write2_adaptive_fast
	atrshmlog_counter_write2_adaptive_very_fast
	atrshmlog_counter_write2_abort5
	atrshmlog_counter_write2_abort6
	atrshmlog_counter_write2_abort7
	atrshmlog_counter_set_slave_count
	atrshmlog_counter_set_clock_id
	atrshmlog_counter_slave_off
	atrshmlog_counter_set_event_locks
	atrshmlog_counter_set_buffer_size
	atrshmlog_counter_set_wait_slaves_on
	atrshmlog_counter_set_wait_slaves_off
	atrshmlog_counter_set_slave_wait
	atrshmlog_counter_set_prealloc_count
	atrshmlog_counter_set_thread_fence
	atrshmlog_counter_create
	atrshmlog_counter_create_abort1
	atrshmlog_counter_create_abort2
	atrshmlog_counter_create_abort3
	atrshmlog_counter_create_abort4
	atrshmlog_counter_delete
	atrshmlog_counter_cleanup_locks
	atrshmlog_counter_init_shm
	atrshmlog_counter_read
	atrshmlog_counter_read_doit
	atrshmlog_counter_read_fetch
	atrshmlog_counter_read_fetch_doit
	atrshmlog_counter_verify
	atrshmlog_counter_logging_process_on
	atrshmlog_counter_logging_process_off
	atrshmlog_counter_set_strategy
	atrshmlog_counter_set_strategy_process
	atrshmlog_counter_set_event
	atrshmlog_counter_set_env_prefix
	atrshmlog_counter_exit_cleanup
	atrshmlog_counter_flush
	atrshmlog_counter_logging_process_off_final
	atrshmlog_counter_turn_logging_off
	atrshmlog_counter_init_in_advance_on
	atrshmlog_counter_init_in_advance_off

	Strategy
	atrshmlog_strategy_discard
	atrshmlog_strategy_spin_loop
	atrshmlog_strategy_wait
	atrshmlog_strategy_adaptive
	atrshmlog_strategy_adaptive_fast
	atrshmlog_strategy_adaptive_very_fast

	Environment setting
	ATRSHMLOG
	ATRSHMLOG_ID
	ATRSHMLOG_COUNT
	ATRSHMLOG_INIT_IN_ADVANCE
	ATRSHMLOG_STRATEGY
	ATRSHMLOG_STRATEGY_WAIT_TIME
	ATRSHMLOG_DELIMITER_VALUE
	ATRSHMLOG_EVENT_COUNT_MAX
	ATRSHMLOG_BUFFER_SIZE
	ATRSHMLOG_PREALLOC_COUNT
	ATRSHMLOG_SLAVE_WAIT_NANOS
	ATRSHMLOG_SLAVE_COUNT
	ATRSHMLOG_WAIT_FOR_SLAVES_ON
	ATRSHMLOG_CLOCK_ID
	ATRSHMLOG_FENCE_1 to 13
	ATRSHMLOG_LOGGING_IS_OFF_AT_START
	ATRSHMLOG_EVENT_NULL
	ATRSHMLOG_EVENT_ONOFF
	ATRSHMLOG_FETCH_COUNT
	ATRSHMLOG_WRITE_COUNT
	ATRSHMLOG_ALLOC_ADVANCED

	Functions to use before attach
	atrshmlog_set_env_prefix
	atrshmlog_set_event_locks_max
	atrshmlog_set_buffer_size
	atrshmlog_set_f_list_buffer_slave_count
	atrshmlog_set_clock_id
	atrshmlog_set_wait_for_slaves_on
	atrshmlog_set_wait_for_slaves_off
	atrshmlog_set_f_list_buffer_slave_wait
	atrshmlog_set_prealloc_buffer_count
	atrshmlog_set_strategy_process
	atrshmlog_set_thread_fence_1 to atrshmlog_set_thread_fence_13
	atrshmlog_set_init_buffers_in_advance_on
	atrshmlog_set_init_buffers_in_advance_off

